| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odval.1 |
|- X = ( Base ` G ) |
| 2 |
|
odval.2 |
|- .x. = ( .g ` G ) |
| 3 |
|
odval.3 |
|- .0. = ( 0g ` G ) |
| 4 |
|
odval.4 |
|- O = ( od ` G ) |
| 5 |
|
odval.i |
|- I = { y e. NN | ( y .x. A ) = .0. } |
| 6 |
1 2 3 4 5
|
odval |
|- ( A e. X -> ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
| 7 |
|
eqeq2 |
|- ( 0 = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( O ` A ) = 0 <-> ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) ) |
| 8 |
7
|
imbi1d |
|- ( 0 = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = 0 -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) <-> ( ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) ) |
| 9 |
|
eqeq2 |
|- ( inf ( I , RR , < ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( O ` A ) = inf ( I , RR , < ) <-> ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) ) |
| 10 |
9
|
imbi1d |
|- ( inf ( I , RR , < ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = inf ( I , RR , < ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) <-> ( ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) ) |
| 11 |
|
orc |
|- ( ( ( O ` A ) = 0 /\ I = (/) ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) |
| 12 |
11
|
expcom |
|- ( I = (/) -> ( ( O ` A ) = 0 -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) |
| 13 |
12
|
adantl |
|- ( ( A e. X /\ I = (/) ) -> ( ( O ` A ) = 0 -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) |
| 14 |
|
ssrab2 |
|- { y e. NN | ( y .x. A ) = .0. } C_ NN |
| 15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 16 |
15
|
eqcomi |
|- ( ZZ>= ` 1 ) = NN |
| 17 |
14 5 16
|
3sstr4i |
|- I C_ ( ZZ>= ` 1 ) |
| 18 |
|
neqne |
|- ( -. I = (/) -> I =/= (/) ) |
| 19 |
18
|
adantl |
|- ( ( A e. X /\ -. I = (/) ) -> I =/= (/) ) |
| 20 |
|
infssuzcl |
|- ( ( I C_ ( ZZ>= ` 1 ) /\ I =/= (/) ) -> inf ( I , RR , < ) e. I ) |
| 21 |
17 19 20
|
sylancr |
|- ( ( A e. X /\ -. I = (/) ) -> inf ( I , RR , < ) e. I ) |
| 22 |
|
eleq1a |
|- ( inf ( I , RR , < ) e. I -> ( ( O ` A ) = inf ( I , RR , < ) -> ( O ` A ) e. I ) ) |
| 23 |
21 22
|
syl |
|- ( ( A e. X /\ -. I = (/) ) -> ( ( O ` A ) = inf ( I , RR , < ) -> ( O ` A ) e. I ) ) |
| 24 |
|
olc |
|- ( ( O ` A ) e. I -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) |
| 25 |
23 24
|
syl6 |
|- ( ( A e. X /\ -. I = (/) ) -> ( ( O ` A ) = inf ( I , RR , < ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) |
| 26 |
8 10 13 25
|
ifbothda |
|- ( A e. X -> ( ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) |
| 27 |
6 26
|
mpd |
|- ( A e. X -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) |