| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odupos.d |
|- D = ( ODual ` O ) |
| 2 |
1
|
fvexi |
|- D e. _V |
| 3 |
2
|
a1i |
|- ( O e. Poset -> D e. _V ) |
| 4 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
| 5 |
1 4
|
odubas |
|- ( Base ` O ) = ( Base ` D ) |
| 6 |
5
|
a1i |
|- ( O e. Poset -> ( Base ` O ) = ( Base ` D ) ) |
| 7 |
|
eqid |
|- ( le ` O ) = ( le ` O ) |
| 8 |
1 7
|
oduleval |
|- `' ( le ` O ) = ( le ` D ) |
| 9 |
8
|
a1i |
|- ( O e. Poset -> `' ( le ` O ) = ( le ` D ) ) |
| 10 |
4 7
|
posref |
|- ( ( O e. Poset /\ a e. ( Base ` O ) ) -> a ( le ` O ) a ) |
| 11 |
|
vex |
|- a e. _V |
| 12 |
11 11
|
brcnv |
|- ( a `' ( le ` O ) a <-> a ( le ` O ) a ) |
| 13 |
10 12
|
sylibr |
|- ( ( O e. Poset /\ a e. ( Base ` O ) ) -> a `' ( le ` O ) a ) |
| 14 |
|
vex |
|- b e. _V |
| 15 |
11 14
|
brcnv |
|- ( a `' ( le ` O ) b <-> b ( le ` O ) a ) |
| 16 |
14 11
|
brcnv |
|- ( b `' ( le ` O ) a <-> a ( le ` O ) b ) |
| 17 |
15 16
|
anbi12ci |
|- ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) a ) <-> ( a ( le ` O ) b /\ b ( le ` O ) a ) ) |
| 18 |
4 7
|
posasymb |
|- ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a ( le ` O ) b /\ b ( le ` O ) a ) <-> a = b ) ) |
| 19 |
18
|
biimpd |
|- ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a ( le ` O ) b /\ b ( le ` O ) a ) -> a = b ) ) |
| 20 |
17 19
|
biimtrid |
|- ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) a ) -> a = b ) ) |
| 21 |
|
3anrev |
|- ( ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) <-> ( c e. ( Base ` O ) /\ b e. ( Base ` O ) /\ a e. ( Base ` O ) ) ) |
| 22 |
4 7
|
postr |
|- ( ( O e. Poset /\ ( c e. ( Base ` O ) /\ b e. ( Base ` O ) /\ a e. ( Base ` O ) ) ) -> ( ( c ( le ` O ) b /\ b ( le ` O ) a ) -> c ( le ` O ) a ) ) |
| 23 |
21 22
|
sylan2b |
|- ( ( O e. Poset /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) ) -> ( ( c ( le ` O ) b /\ b ( le ` O ) a ) -> c ( le ` O ) a ) ) |
| 24 |
|
vex |
|- c e. _V |
| 25 |
14 24
|
brcnv |
|- ( b `' ( le ` O ) c <-> c ( le ` O ) b ) |
| 26 |
15 25
|
anbi12ci |
|- ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) c ) <-> ( c ( le ` O ) b /\ b ( le ` O ) a ) ) |
| 27 |
11 24
|
brcnv |
|- ( a `' ( le ` O ) c <-> c ( le ` O ) a ) |
| 28 |
23 26 27
|
3imtr4g |
|- ( ( O e. Poset /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) ) -> ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) c ) -> a `' ( le ` O ) c ) ) |
| 29 |
3 6 9 13 20 28
|
isposd |
|- ( O e. Poset -> D e. Poset ) |