Step |
Hyp |
Ref |
Expression |
1 |
|
on3ind.1 |
|- ( a = d -> ( ph <-> ps ) ) |
2 |
|
on3ind.2 |
|- ( b = e -> ( ps <-> ch ) ) |
3 |
|
on3ind.3 |
|- ( c = f -> ( ch <-> th ) ) |
4 |
|
on3ind.4 |
|- ( a = d -> ( ta <-> th ) ) |
5 |
|
on3ind.5 |
|- ( b = e -> ( et <-> ta ) ) |
6 |
|
on3ind.6 |
|- ( b = e -> ( ze <-> th ) ) |
7 |
|
on3ind.7 |
|- ( c = f -> ( si <-> ta ) ) |
8 |
|
on3ind.8 |
|- ( a = X -> ( ph <-> rh ) ) |
9 |
|
on3ind.9 |
|- ( b = Y -> ( rh <-> mu ) ) |
10 |
|
on3ind.10 |
|- ( c = Z -> ( mu <-> la ) ) |
11 |
|
on3ind.i |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( ( ( A. d e. a A. e e. b A. f e. c th /\ A. d e. a A. e e. b ch /\ A. d e. a A. f e. c ze ) /\ ( A. d e. a ps /\ A. e e. b A. f e. c ta /\ A. e e. b si ) /\ A. f e. c et ) -> ph ) ) |
12 |
|
eqid |
|- { <. x , y >. | ( x e. ( ( On X. On ) X. On ) /\ y e. ( ( On X. On ) X. On ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) _E ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) _E ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } = { <. x , y >. | ( x e. ( ( On X. On ) X. On ) /\ y e. ( ( On X. On ) X. On ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) _E ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) _E ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } |
13 |
|
onfr |
|- _E Fr On |
14 |
|
epweon |
|- _E We On |
15 |
|
weso |
|- ( _E We On -> _E Or On ) |
16 |
|
sopo |
|- ( _E Or On -> _E Po On ) |
17 |
14 15 16
|
mp2b |
|- _E Po On |
18 |
|
epse |
|- _E Se On |
19 |
|
predon |
|- ( a e. On -> Pred ( _E , On , a ) = a ) |
20 |
19
|
3ad2ant1 |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> Pred ( _E , On , a ) = a ) |
21 |
|
predon |
|- ( b e. On -> Pred ( _E , On , b ) = b ) |
22 |
21
|
3ad2ant2 |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> Pred ( _E , On , b ) = b ) |
23 |
|
predon |
|- ( c e. On -> Pred ( _E , On , c ) = c ) |
24 |
23
|
3ad2ant3 |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> Pred ( _E , On , c ) = c ) |
25 |
24
|
raleqdv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. f e. Pred ( _E , On , c ) th <-> A. f e. c th ) ) |
26 |
22 25
|
raleqbidv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. e e. Pred ( _E , On , b ) A. f e. Pred ( _E , On , c ) th <-> A. e e. b A. f e. c th ) ) |
27 |
20 26
|
raleqbidv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. d e. Pred ( _E , On , a ) A. e e. Pred ( _E , On , b ) A. f e. Pred ( _E , On , c ) th <-> A. d e. a A. e e. b A. f e. c th ) ) |
28 |
22
|
raleqdv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. e e. Pred ( _E , On , b ) ch <-> A. e e. b ch ) ) |
29 |
20 28
|
raleqbidv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. d e. Pred ( _E , On , a ) A. e e. Pred ( _E , On , b ) ch <-> A. d e. a A. e e. b ch ) ) |
30 |
24
|
raleqdv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. f e. Pred ( _E , On , c ) ze <-> A. f e. c ze ) ) |
31 |
20 30
|
raleqbidv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. d e. Pred ( _E , On , a ) A. f e. Pred ( _E , On , c ) ze <-> A. d e. a A. f e. c ze ) ) |
32 |
27 29 31
|
3anbi123d |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( ( A. d e. Pred ( _E , On , a ) A. e e. Pred ( _E , On , b ) A. f e. Pred ( _E , On , c ) th /\ A. d e. Pred ( _E , On , a ) A. e e. Pred ( _E , On , b ) ch /\ A. d e. Pred ( _E , On , a ) A. f e. Pred ( _E , On , c ) ze ) <-> ( A. d e. a A. e e. b A. f e. c th /\ A. d e. a A. e e. b ch /\ A. d e. a A. f e. c ze ) ) ) |
33 |
20
|
raleqdv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. d e. Pred ( _E , On , a ) ps <-> A. d e. a ps ) ) |
34 |
24
|
raleqdv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. f e. Pred ( _E , On , c ) ta <-> A. f e. c ta ) ) |
35 |
22 34
|
raleqbidv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. e e. Pred ( _E , On , b ) A. f e. Pred ( _E , On , c ) ta <-> A. e e. b A. f e. c ta ) ) |
36 |
22
|
raleqdv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. e e. Pred ( _E , On , b ) si <-> A. e e. b si ) ) |
37 |
33 35 36
|
3anbi123d |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( ( A. d e. Pred ( _E , On , a ) ps /\ A. e e. Pred ( _E , On , b ) A. f e. Pred ( _E , On , c ) ta /\ A. e e. Pred ( _E , On , b ) si ) <-> ( A. d e. a ps /\ A. e e. b A. f e. c ta /\ A. e e. b si ) ) ) |
38 |
24
|
raleqdv |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( A. f e. Pred ( _E , On , c ) et <-> A. f e. c et ) ) |
39 |
32 37 38
|
3anbi123d |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( ( ( A. d e. Pred ( _E , On , a ) A. e e. Pred ( _E , On , b ) A. f e. Pred ( _E , On , c ) th /\ A. d e. Pred ( _E , On , a ) A. e e. Pred ( _E , On , b ) ch /\ A. d e. Pred ( _E , On , a ) A. f e. Pred ( _E , On , c ) ze ) /\ ( A. d e. Pred ( _E , On , a ) ps /\ A. e e. Pred ( _E , On , b ) A. f e. Pred ( _E , On , c ) ta /\ A. e e. Pred ( _E , On , b ) si ) /\ A. f e. Pred ( _E , On , c ) et ) <-> ( ( A. d e. a A. e e. b A. f e. c th /\ A. d e. a A. e e. b ch /\ A. d e. a A. f e. c ze ) /\ ( A. d e. a ps /\ A. e e. b A. f e. c ta /\ A. e e. b si ) /\ A. f e. c et ) ) ) |
40 |
39 11
|
sylbid |
|- ( ( a e. On /\ b e. On /\ c e. On ) -> ( ( ( A. d e. Pred ( _E , On , a ) A. e e. Pred ( _E , On , b ) A. f e. Pred ( _E , On , c ) th /\ A. d e. Pred ( _E , On , a ) A. e e. Pred ( _E , On , b ) ch /\ A. d e. Pred ( _E , On , a ) A. f e. Pred ( _E , On , c ) ze ) /\ ( A. d e. Pred ( _E , On , a ) ps /\ A. e e. Pred ( _E , On , b ) A. f e. Pred ( _E , On , c ) ta /\ A. e e. Pred ( _E , On , b ) si ) /\ A. f e. Pred ( _E , On , c ) et ) -> ph ) ) |
41 |
12 13 17 18 13 17 18 13 17 18 1 2 3 4 5 6 7 8 9 10 40
|
xpord3ind |
|- ( ( X e. On /\ Y e. On /\ Z e. On ) -> la ) |