Step |
Hyp |
Ref |
Expression |
1 |
|
on3ind.1 |
⊢ ( 𝑎 = 𝑑 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
on3ind.2 |
⊢ ( 𝑏 = 𝑒 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
on3ind.3 |
⊢ ( 𝑐 = 𝑓 → ( 𝜒 ↔ 𝜃 ) ) |
4 |
|
on3ind.4 |
⊢ ( 𝑎 = 𝑑 → ( 𝜏 ↔ 𝜃 ) ) |
5 |
|
on3ind.5 |
⊢ ( 𝑏 = 𝑒 → ( 𝜂 ↔ 𝜏 ) ) |
6 |
|
on3ind.6 |
⊢ ( 𝑏 = 𝑒 → ( 𝜁 ↔ 𝜃 ) ) |
7 |
|
on3ind.7 |
⊢ ( 𝑐 = 𝑓 → ( 𝜎 ↔ 𝜏 ) ) |
8 |
|
on3ind.8 |
⊢ ( 𝑎 = 𝑋 → ( 𝜑 ↔ 𝜌 ) ) |
9 |
|
on3ind.9 |
⊢ ( 𝑏 = 𝑌 → ( 𝜌 ↔ 𝜇 ) ) |
10 |
|
on3ind.10 |
⊢ ( 𝑐 = 𝑍 → ( 𝜇 ↔ 𝜆 ) ) |
11 |
|
on3ind.i |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ( ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ 𝑏 ∀ 𝑓 ∈ 𝑐 𝜃 ∧ ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ 𝑏 𝜒 ∧ ∀ 𝑑 ∈ 𝑎 ∀ 𝑓 ∈ 𝑐 𝜁 ) ∧ ( ∀ 𝑑 ∈ 𝑎 𝜓 ∧ ∀ 𝑒 ∈ 𝑏 ∀ 𝑓 ∈ 𝑐 𝜏 ∧ ∀ 𝑒 ∈ 𝑏 𝜎 ) ∧ ∀ 𝑓 ∈ 𝑐 𝜂 ) → 𝜑 ) ) |
12 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( On × On ) × On ) ∧ 𝑦 ∈ ( ( On × On ) × On ) ∧ ( ( ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) E ( 1st ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) E ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ∧ 𝑥 ≠ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( On × On ) × On ) ∧ 𝑦 ∈ ( ( On × On ) × On ) ∧ ( ( ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) E ( 1st ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) E ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
13 |
|
onfr |
⊢ E Fr On |
14 |
|
epweon |
⊢ E We On |
15 |
|
weso |
⊢ ( E We On → E Or On ) |
16 |
|
sopo |
⊢ ( E Or On → E Po On ) |
17 |
14 15 16
|
mp2b |
⊢ E Po On |
18 |
|
epse |
⊢ E Se On |
19 |
|
predon |
⊢ ( 𝑎 ∈ On → Pred ( E , On , 𝑎 ) = 𝑎 ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → Pred ( E , On , 𝑎 ) = 𝑎 ) |
21 |
|
predon |
⊢ ( 𝑏 ∈ On → Pred ( E , On , 𝑏 ) = 𝑏 ) |
22 |
21
|
3ad2ant2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → Pred ( E , On , 𝑏 ) = 𝑏 ) |
23 |
|
predon |
⊢ ( 𝑐 ∈ On → Pred ( E , On , 𝑐 ) = 𝑐 ) |
24 |
23
|
3ad2ant3 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → Pred ( E , On , 𝑐 ) = 𝑐 ) |
25 |
24
|
raleqdv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ↔ ∀ 𝑓 ∈ 𝑐 𝜃 ) ) |
26 |
22 25
|
raleqbidv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ↔ ∀ 𝑒 ∈ 𝑏 ∀ 𝑓 ∈ 𝑐 𝜃 ) ) |
27 |
20 26
|
raleqbidv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ↔ ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ 𝑏 ∀ 𝑓 ∈ 𝑐 𝜃 ) ) |
28 |
22
|
raleqdv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ↔ ∀ 𝑒 ∈ 𝑏 𝜒 ) ) |
29 |
20 28
|
raleqbidv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ↔ ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ 𝑏 𝜒 ) ) |
30 |
24
|
raleqdv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ↔ ∀ 𝑓 ∈ 𝑐 𝜁 ) ) |
31 |
20 30
|
raleqbidv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ↔ ∀ 𝑑 ∈ 𝑎 ∀ 𝑓 ∈ 𝑐 𝜁 ) ) |
32 |
27 29 31
|
3anbi123d |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ) ↔ ( ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ 𝑏 ∀ 𝑓 ∈ 𝑐 𝜃 ∧ ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ 𝑏 𝜒 ∧ ∀ 𝑑 ∈ 𝑎 ∀ 𝑓 ∈ 𝑐 𝜁 ) ) ) |
33 |
20
|
raleqdv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) 𝜓 ↔ ∀ 𝑑 ∈ 𝑎 𝜓 ) ) |
34 |
24
|
raleqdv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ↔ ∀ 𝑓 ∈ 𝑐 𝜏 ) ) |
35 |
22 34
|
raleqbidv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ↔ ∀ 𝑒 ∈ 𝑏 ∀ 𝑓 ∈ 𝑐 𝜏 ) ) |
36 |
22
|
raleqdv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜎 ↔ ∀ 𝑒 ∈ 𝑏 𝜎 ) ) |
37 |
33 35 36
|
3anbi123d |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜎 ) ↔ ( ∀ 𝑑 ∈ 𝑎 𝜓 ∧ ∀ 𝑒 ∈ 𝑏 ∀ 𝑓 ∈ 𝑐 𝜏 ∧ ∀ 𝑒 ∈ 𝑏 𝜎 ) ) ) |
38 |
24
|
raleqdv |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜂 ↔ ∀ 𝑓 ∈ 𝑐 𝜂 ) ) |
39 |
32 37 38
|
3anbi123d |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜂 ) ↔ ( ( ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ 𝑏 ∀ 𝑓 ∈ 𝑐 𝜃 ∧ ∀ 𝑑 ∈ 𝑎 ∀ 𝑒 ∈ 𝑏 𝜒 ∧ ∀ 𝑑 ∈ 𝑎 ∀ 𝑓 ∈ 𝑐 𝜁 ) ∧ ( ∀ 𝑑 ∈ 𝑎 𝜓 ∧ ∀ 𝑒 ∈ 𝑏 ∀ 𝑓 ∈ 𝑐 𝜏 ∧ ∀ 𝑒 ∈ 𝑏 𝜎 ) ∧ ∀ 𝑓 ∈ 𝑐 𝜂 ) ) ) |
40 |
39 11
|
sylbid |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜂 ) → 𝜑 ) ) |
41 |
12 13 17 18 13 17 18 13 17 18 1 2 3 4 5 6 7 8 9 10 40
|
xpord3ind |
⊢ ( ( 𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On ) → 𝜆 ) |