| Step | Hyp | Ref | Expression | 
						
							| 1 |  | znegcl |  |-  ( A e. ZZ -> -u A e. ZZ ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> -u A e. ZZ ) | 
						
							| 3 |  | znegcl |  |-  ( ( ( A - 1 ) / 2 ) e. ZZ -> -u ( ( A - 1 ) / 2 ) e. ZZ ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> -u ( ( A - 1 ) / 2 ) e. ZZ ) | 
						
							| 5 |  | peano2zm |  |-  ( A e. ZZ -> ( A - 1 ) e. ZZ ) | 
						
							| 6 | 5 | zcnd |  |-  ( A e. ZZ -> ( A - 1 ) e. CC ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( A - 1 ) e. CC ) | 
						
							| 8 |  | 2cnd |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> 2 e. CC ) | 
						
							| 9 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 10 | 9 | a1i |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> 2 =/= 0 ) | 
						
							| 11 |  | divneg |  |-  ( ( ( A - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( ( A - 1 ) / 2 ) = ( -u ( A - 1 ) / 2 ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( ( ( A - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( -u ( ( A - 1 ) / 2 ) e. ZZ <-> ( -u ( A - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 13 | 7 8 10 12 | syl3anc |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( -u ( ( A - 1 ) / 2 ) e. ZZ <-> ( -u ( A - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 14 | 4 13 | mpbid |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( -u ( A - 1 ) / 2 ) e. ZZ ) | 
						
							| 15 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 16 |  | 1cnd |  |-  ( A e. ZZ -> 1 e. CC ) | 
						
							| 17 |  | negsubdi |  |-  ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( -u A + 1 ) ) | 
						
							| 18 | 17 | eqcomd |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( -u A + 1 ) = -u ( A - 1 ) ) | 
						
							| 19 | 15 16 18 | syl2anc |  |-  ( A e. ZZ -> ( -u A + 1 ) = -u ( A - 1 ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( A e. ZZ -> ( ( -u A + 1 ) / 2 ) = ( -u ( A - 1 ) / 2 ) ) | 
						
							| 21 | 20 | eleq1d |  |-  ( A e. ZZ -> ( ( ( -u A + 1 ) / 2 ) e. ZZ <-> ( -u ( A - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( ( ( -u A + 1 ) / 2 ) e. ZZ <-> ( -u ( A - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 23 | 14 22 | mpbird |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( ( -u A + 1 ) / 2 ) e. ZZ ) | 
						
							| 24 | 2 23 | jca |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( -u A e. ZZ /\ ( ( -u A + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 25 |  | isodd2 |  |-  ( A e. Odd <-> ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 26 |  | isodd |  |-  ( -u A e. Odd <-> ( -u A e. ZZ /\ ( ( -u A + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 27 | 24 25 26 | 3imtr4i |  |-  ( A e. Odd -> -u A e. Odd ) |