| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onovuni.1 |
|- ( Lim y -> ( A F y ) = U_ x e. y ( A F x ) ) |
| 2 |
|
onovuni.2 |
|- ( ( x e. On /\ y e. On /\ x C_ y ) -> ( A F x ) C_ ( A F y ) ) |
| 3 |
|
oveq2 |
|- ( z = y -> ( A F z ) = ( A F y ) ) |
| 4 |
|
eqid |
|- ( z e. _V |-> ( A F z ) ) = ( z e. _V |-> ( A F z ) ) |
| 5 |
|
ovex |
|- ( A F y ) e. _V |
| 6 |
3 4 5
|
fvmpt |
|- ( y e. _V -> ( ( z e. _V |-> ( A F z ) ) ` y ) = ( A F y ) ) |
| 7 |
6
|
elv |
|- ( ( z e. _V |-> ( A F z ) ) ` y ) = ( A F y ) |
| 8 |
|
oveq2 |
|- ( z = x -> ( A F z ) = ( A F x ) ) |
| 9 |
|
ovex |
|- ( A F x ) e. _V |
| 10 |
8 4 9
|
fvmpt |
|- ( x e. _V -> ( ( z e. _V |-> ( A F z ) ) ` x ) = ( A F x ) ) |
| 11 |
10
|
elv |
|- ( ( z e. _V |-> ( A F z ) ) ` x ) = ( A F x ) |
| 12 |
11
|
a1i |
|- ( x e. y -> ( ( z e. _V |-> ( A F z ) ) ` x ) = ( A F x ) ) |
| 13 |
12
|
iuneq2i |
|- U_ x e. y ( ( z e. _V |-> ( A F z ) ) ` x ) = U_ x e. y ( A F x ) |
| 14 |
1 7 13
|
3eqtr4g |
|- ( Lim y -> ( ( z e. _V |-> ( A F z ) ) ` y ) = U_ x e. y ( ( z e. _V |-> ( A F z ) ) ` x ) ) |
| 15 |
2 11 7
|
3sstr4g |
|- ( ( x e. On /\ y e. On /\ x C_ y ) -> ( ( z e. _V |-> ( A F z ) ) ` x ) C_ ( ( z e. _V |-> ( A F z ) ) ` y ) ) |
| 16 |
14 15
|
onfununi |
|- ( ( S e. T /\ S C_ On /\ S =/= (/) ) -> ( ( z e. _V |-> ( A F z ) ) ` U. S ) = U_ x e. S ( ( z e. _V |-> ( A F z ) ) ` x ) ) |
| 17 |
|
uniexg |
|- ( S e. T -> U. S e. _V ) |
| 18 |
|
oveq2 |
|- ( z = U. S -> ( A F z ) = ( A F U. S ) ) |
| 19 |
|
ovex |
|- ( A F U. S ) e. _V |
| 20 |
18 4 19
|
fvmpt |
|- ( U. S e. _V -> ( ( z e. _V |-> ( A F z ) ) ` U. S ) = ( A F U. S ) ) |
| 21 |
17 20
|
syl |
|- ( S e. T -> ( ( z e. _V |-> ( A F z ) ) ` U. S ) = ( A F U. S ) ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( S e. T /\ S C_ On /\ S =/= (/) ) -> ( ( z e. _V |-> ( A F z ) ) ` U. S ) = ( A F U. S ) ) |
| 23 |
11
|
a1i |
|- ( x e. S -> ( ( z e. _V |-> ( A F z ) ) ` x ) = ( A F x ) ) |
| 24 |
23
|
iuneq2i |
|- U_ x e. S ( ( z e. _V |-> ( A F z ) ) ` x ) = U_ x e. S ( A F x ) |
| 25 |
24
|
a1i |
|- ( ( S e. T /\ S C_ On /\ S =/= (/) ) -> U_ x e. S ( ( z e. _V |-> ( A F z ) ) ` x ) = U_ x e. S ( A F x ) ) |
| 26 |
16 22 25
|
3eqtr3d |
|- ( ( S e. T /\ S C_ On /\ S =/= (/) ) -> ( A F U. S ) = U_ x e. S ( A F x ) ) |