Metamath Proof Explorer


Theorem opnneilv

Description: The converse of opnneir with different dummy variables. Note that the second hypothesis could be generalized by adding y e. J to the antecedent. See the proof for details. Although J e. Top might be redundant here (see neircl ), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024)

Ref Expression
Hypotheses opnneir.1
|- ( ph -> J e. Top )
opnneilv.2
|- ( ( ph /\ y C_ x ) -> ( ps -> ch ) )
Assertion opnneilv
|- ( ph -> ( E. x e. ( ( nei ` J ) ` S ) ps -> E. y e. J ( S C_ y /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 opnneir.1
 |-  ( ph -> J e. Top )
2 opnneilv.2
 |-  ( ( ph /\ y C_ x ) -> ( ps -> ch ) )
3 df-rex
 |-  ( E. x e. ( ( nei ` J ) ` S ) ps <-> E. x ( x e. ( ( nei ` J ) ` S ) /\ ps ) )
4 neii2
 |-  ( ( J e. Top /\ x e. ( ( nei ` J ) ` S ) ) -> E. y e. J ( S C_ y /\ y C_ x ) )
5 1 4 sylan
 |-  ( ( ph /\ x e. ( ( nei ` J ) ` S ) ) -> E. y e. J ( S C_ y /\ y C_ x ) )
6 5 r19.41dv
 |-  ( ( ( ph /\ x e. ( ( nei ` J ) ` S ) ) /\ ps ) -> E. y e. J ( ( S C_ y /\ y C_ x ) /\ ps ) )
7 6 expl
 |-  ( ph -> ( ( x e. ( ( nei ` J ) ` S ) /\ ps ) -> E. y e. J ( ( S C_ y /\ y C_ x ) /\ ps ) ) )
8 anass
 |-  ( ( ( S C_ y /\ y C_ x ) /\ ps ) <-> ( S C_ y /\ ( y C_ x /\ ps ) ) )
9 2 expimpd
 |-  ( ph -> ( ( y C_ x /\ ps ) -> ch ) )
10 9 anim2d
 |-  ( ph -> ( ( S C_ y /\ ( y C_ x /\ ps ) ) -> ( S C_ y /\ ch ) ) )
11 8 10 syl5bi
 |-  ( ph -> ( ( ( S C_ y /\ y C_ x ) /\ ps ) -> ( S C_ y /\ ch ) ) )
12 11 reximdv
 |-  ( ph -> ( E. y e. J ( ( S C_ y /\ y C_ x ) /\ ps ) -> E. y e. J ( S C_ y /\ ch ) ) )
13 7 12 syld
 |-  ( ph -> ( ( x e. ( ( nei ` J ) ` S ) /\ ps ) -> E. y e. J ( S C_ y /\ ch ) ) )
14 13 exlimdv
 |-  ( ph -> ( E. x ( x e. ( ( nei ` J ) ` S ) /\ ps ) -> E. y e. J ( S C_ y /\ ch ) ) )
15 3 14 syl5bi
 |-  ( ph -> ( E. x e. ( ( nei ` J ) ` S ) ps -> E. y e. J ( S C_ y /\ ch ) ) )