Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
2 |
1
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
3 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
4 |
1 3
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
5 |
4
|
elmopn2 |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) -> ( A e. ( topGen ` ran (,) ) <-> ( A C_ RR /\ A. x e. A E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) ) ) |
6 |
2 5
|
ax-mp |
|- ( A e. ( topGen ` ran (,) ) <-> ( A C_ RR /\ A. x e. A E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) ) |
7 |
|
ssel2 |
|- ( ( A C_ RR /\ x e. A ) -> x e. RR ) |
8 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
9 |
1
|
bl2ioo |
|- ( ( x e. RR /\ y e. RR ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) = ( ( x - y ) (,) ( x + y ) ) ) |
10 |
8 9
|
sylan2 |
|- ( ( x e. RR /\ y e. RR+ ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) = ( ( x - y ) (,) ( x + y ) ) ) |
11 |
10
|
sseq1d |
|- ( ( x e. RR /\ y e. RR+ ) -> ( ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A <-> ( ( x - y ) (,) ( x + y ) ) C_ A ) ) |
12 |
11
|
rexbidva |
|- ( x e. RR -> ( E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A <-> E. y e. RR+ ( ( x - y ) (,) ( x + y ) ) C_ A ) ) |
13 |
7 12
|
syl |
|- ( ( A C_ RR /\ x e. A ) -> ( E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A <-> E. y e. RR+ ( ( x - y ) (,) ( x + y ) ) C_ A ) ) |
14 |
13
|
ralbidva |
|- ( A C_ RR -> ( A. x e. A E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A <-> A. x e. A E. y e. RR+ ( ( x - y ) (,) ( x + y ) ) C_ A ) ) |
15 |
14
|
pm5.32i |
|- ( ( A C_ RR /\ A. x e. A E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) <-> ( A C_ RR /\ A. x e. A E. y e. RR+ ( ( x - y ) (,) ( x + y ) ) C_ A ) ) |
16 |
6 15
|
bitri |
|- ( A e. ( topGen ` ran (,) ) <-> ( A C_ RR /\ A. x e. A E. y e. RR+ ( ( x - y ) (,) ( x + y ) ) C_ A ) ) |