Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
2 |
1
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
3 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
4 |
1 3
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
5 |
4
|
mopnss |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) ) -> A C_ RR ) |
6 |
2 5
|
mpan |
|- ( A e. ( topGen ` ran (,) ) -> A C_ RR ) |
7 |
4
|
mopni3 |
|- ( ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) -> E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) |
8 |
7
|
ex |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) /\ x e. A ) -> ( y e. RR+ -> E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) ) |
9 |
2 8
|
mp3an1 |
|- ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> ( y e. RR+ -> E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) ) |
10 |
6
|
sselda |
|- ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> x e. RR ) |
11 |
|
rpre |
|- ( z e. RR+ -> z e. RR ) |
12 |
1
|
bl2ioo |
|- ( ( x e. RR /\ z e. RR ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) = ( ( x - z ) (,) ( x + z ) ) ) |
13 |
11 12
|
sylan2 |
|- ( ( x e. RR /\ z e. RR+ ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) = ( ( x - z ) (,) ( x + z ) ) ) |
14 |
13
|
sseq1d |
|- ( ( x e. RR /\ z e. RR+ ) -> ( ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A <-> ( ( x - z ) (,) ( x + z ) ) C_ A ) ) |
15 |
14
|
anbi2d |
|- ( ( x e. RR /\ z e. RR+ ) -> ( ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) <-> ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |
16 |
15
|
rexbidva |
|- ( x e. RR -> ( E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) <-> E. z e. RR+ ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |
17 |
16
|
biimpd |
|- ( x e. RR -> ( E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) -> E. z e. RR+ ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |
18 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
19 |
|
ltle |
|- ( ( z e. RR /\ y e. RR ) -> ( z < y -> z <_ y ) ) |
20 |
11 18 19
|
syl2anr |
|- ( ( y e. RR+ /\ z e. RR+ ) -> ( z < y -> z <_ y ) ) |
21 |
20
|
anim1d |
|- ( ( y e. RR+ /\ z e. RR+ ) -> ( ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |
22 |
21
|
reximdva |
|- ( y e. RR+ -> ( E. z e. RR+ ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |
23 |
17 22
|
syl9 |
|- ( x e. RR -> ( y e. RR+ -> ( E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) ) |
24 |
10 23
|
syl |
|- ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> ( y e. RR+ -> ( E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) ) |
25 |
9 24
|
mpdd |
|- ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> ( y e. RR+ -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |
26 |
25
|
expimpd |
|- ( A e. ( topGen ` ran (,) ) -> ( ( x e. A /\ y e. RR+ ) -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |
27 |
26
|
ralrimivv |
|- ( A e. ( topGen ` ran (,) ) -> A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) |
28 |
6 27
|
jca |
|- ( A e. ( topGen ` ran (,) ) -> ( A C_ RR /\ A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |
29 |
|
ssel2 |
|- ( ( A C_ RR /\ x e. A ) -> x e. RR ) |
30 |
|
1rp |
|- 1 e. RR+ |
31 |
|
simpr |
|- ( ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> ( ( x - z ) (,) ( x + z ) ) C_ A ) |
32 |
31
|
reximi |
|- ( E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) |
33 |
32
|
ralimi |
|- ( A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> A. y e. RR+ E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) |
34 |
|
biidd |
|- ( y = 1 -> ( E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A <-> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) |
35 |
34
|
rspcv |
|- ( 1 e. RR+ -> ( A. y e. RR+ E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A -> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) |
36 |
30 33 35
|
mpsyl |
|- ( A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) |
37 |
14
|
rexbidva |
|- ( x e. RR -> ( E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A <-> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) |
38 |
36 37
|
syl5ibr |
|- ( x e. RR -> ( A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) |
39 |
29 38
|
syl |
|- ( ( A C_ RR /\ x e. A ) -> ( A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) |
40 |
39
|
ralimdva |
|- ( A C_ RR -> ( A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> A. x e. A E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) |
41 |
40
|
imdistani |
|- ( ( A C_ RR /\ A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) -> ( A C_ RR /\ A. x e. A E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) |
42 |
4
|
elmopn2 |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) -> ( A e. ( topGen ` ran (,) ) <-> ( A C_ RR /\ A. x e. A E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) ) |
43 |
2 42
|
ax-mp |
|- ( A e. ( topGen ` ran (,) ) <-> ( A C_ RR /\ A. x e. A E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) |
44 |
41 43
|
sylibr |
|- ( ( A C_ RR /\ A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) -> A e. ( topGen ` ran (,) ) ) |
45 |
28 44
|
impbii |
|- ( A e. ( topGen ` ran (,) ) <-> ( A C_ RR /\ A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |