| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) | 
						
							| 2 | 1 | rexmet |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) | 
						
							| 3 |  | eqid |  |-  ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 4 | 1 3 | tgioo |  |-  ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 5 | 4 | mopnss |  |-  ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) ) -> A C_ RR ) | 
						
							| 6 | 2 5 | mpan |  |-  ( A e. ( topGen ` ran (,) ) -> A C_ RR ) | 
						
							| 7 | 4 | mopni3 |  |-  ( ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) -> E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) | 
						
							| 8 | 7 | ex |  |-  ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) /\ x e. A ) -> ( y e. RR+ -> E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) ) | 
						
							| 9 | 2 8 | mp3an1 |  |-  ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> ( y e. RR+ -> E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) ) | 
						
							| 10 | 6 | sselda |  |-  ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> x e. RR ) | 
						
							| 11 |  | rpre |  |-  ( z e. RR+ -> z e. RR ) | 
						
							| 12 | 1 | bl2ioo |  |-  ( ( x e. RR /\ z e. RR ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) = ( ( x - z ) (,) ( x + z ) ) ) | 
						
							| 13 | 11 12 | sylan2 |  |-  ( ( x e. RR /\ z e. RR+ ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) = ( ( x - z ) (,) ( x + z ) ) ) | 
						
							| 14 | 13 | sseq1d |  |-  ( ( x e. RR /\ z e. RR+ ) -> ( ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A <-> ( ( x - z ) (,) ( x + z ) ) C_ A ) ) | 
						
							| 15 | 14 | anbi2d |  |-  ( ( x e. RR /\ z e. RR+ ) -> ( ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) <-> ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) | 
						
							| 16 | 15 | rexbidva |  |-  ( x e. RR -> ( E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) <-> E. z e. RR+ ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) | 
						
							| 17 | 16 | biimpd |  |-  ( x e. RR -> ( E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) -> E. z e. RR+ ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) | 
						
							| 18 |  | rpre |  |-  ( y e. RR+ -> y e. RR ) | 
						
							| 19 |  | ltle |  |-  ( ( z e. RR /\ y e. RR ) -> ( z < y -> z <_ y ) ) | 
						
							| 20 | 11 18 19 | syl2anr |  |-  ( ( y e. RR+ /\ z e. RR+ ) -> ( z < y -> z <_ y ) ) | 
						
							| 21 | 20 | anim1d |  |-  ( ( y e. RR+ /\ z e. RR+ ) -> ( ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) | 
						
							| 22 | 21 | reximdva |  |-  ( y e. RR+ -> ( E. z e. RR+ ( z < y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) | 
						
							| 23 | 17 22 | syl9 |  |-  ( x e. RR -> ( y e. RR+ -> ( E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) ) | 
						
							| 24 | 10 23 | syl |  |-  ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> ( y e. RR+ -> ( E. z e. RR+ ( z < y /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) ) | 
						
							| 25 | 9 24 | mpdd |  |-  ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> ( y e. RR+ -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) | 
						
							| 26 | 25 | expimpd |  |-  ( A e. ( topGen ` ran (,) ) -> ( ( x e. A /\ y e. RR+ ) -> E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) | 
						
							| 27 | 26 | ralrimivv |  |-  ( A e. ( topGen ` ran (,) ) -> A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) | 
						
							| 28 | 6 27 | jca |  |-  ( A e. ( topGen ` ran (,) ) -> ( A C_ RR /\ A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) | 
						
							| 29 |  | ssel2 |  |-  ( ( A C_ RR /\ x e. A ) -> x e. RR ) | 
						
							| 30 |  | 1rp |  |-  1 e. RR+ | 
						
							| 31 |  | simpr |  |-  ( ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> ( ( x - z ) (,) ( x + z ) ) C_ A ) | 
						
							| 32 | 31 | reximi |  |-  ( E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) | 
						
							| 33 | 32 | ralimi |  |-  ( A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> A. y e. RR+ E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) | 
						
							| 34 |  | biidd |  |-  ( y = 1 -> ( E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A <-> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) | 
						
							| 35 | 34 | rspcv |  |-  ( 1 e. RR+ -> ( A. y e. RR+ E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A -> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) | 
						
							| 36 | 30 33 35 | mpsyl |  |-  ( A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) | 
						
							| 37 | 14 | rexbidva |  |-  ( x e. RR -> ( E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A <-> E. z e. RR+ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) | 
						
							| 38 | 36 37 | imbitrrid |  |-  ( x e. RR -> ( A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) | 
						
							| 39 | 29 38 | syl |  |-  ( ( A C_ RR /\ x e. A ) -> ( A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) | 
						
							| 40 | 39 | ralimdva |  |-  ( A C_ RR -> ( A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) -> A. x e. A E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) | 
						
							| 41 | 40 | imdistani |  |-  ( ( A C_ RR /\ A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) -> ( A C_ RR /\ A. x e. A E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) | 
						
							| 42 | 4 | elmopn2 |  |-  ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) -> ( A e. ( topGen ` ran (,) ) <-> ( A C_ RR /\ A. x e. A E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) ) | 
						
							| 43 | 2 42 | ax-mp |  |-  ( A e. ( topGen ` ran (,) ) <-> ( A C_ RR /\ A. x e. A E. z e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) z ) C_ A ) ) | 
						
							| 44 | 41 43 | sylibr |  |-  ( ( A C_ RR /\ A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) -> A e. ( topGen ` ran (,) ) ) | 
						
							| 45 | 28 44 | impbii |  |-  ( A e. ( topGen ` ran (,) ) <-> ( A C_ RR /\ A. x e. A A. y e. RR+ E. z e. RR+ ( z <_ y /\ ( ( x - z ) (,) ( x + z ) ) C_ A ) ) ) |