| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppc1stf.o |
|- O = ( oppCat ` C ) |
| 2 |
|
oppc1stf.p |
|- P = ( oppCat ` D ) |
| 3 |
|
oppc1stf.c |
|- ( ph -> C e. V ) |
| 4 |
|
oppc1stf.d |
|- ( ph -> D e. W ) |
| 5 |
|
eqid |
|- ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) = ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) |
| 6 |
5
|
tposmpo |
|- tpos ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) = ( y e. ( ( Base ` C ) X. ( Base ` D ) ) , x e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) |
| 7 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 8 |
7 1
|
oppchom |
|- ( ( 1st ` y ) ( Hom ` O ) ( 1st ` x ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) |
| 9 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 10 |
9 2
|
oppchom |
|- ( ( 2nd ` y ) ( Hom ` P ) ( 2nd ` x ) ) = ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) |
| 11 |
8 10
|
xpeq12i |
|- ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` x ) ) X. ( ( 2nd ` y ) ( Hom ` P ) ( 2nd ` x ) ) ) = ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) |
| 12 |
|
eqid |
|- ( O Xc. P ) = ( O Xc. P ) |
| 13 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 14 |
1 13
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
| 15 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 16 |
2 15
|
oppcbas |
|- ( Base ` D ) = ( Base ` P ) |
| 17 |
12 14 16
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` ( O Xc. P ) ) |
| 18 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
| 19 |
|
eqid |
|- ( Hom ` P ) = ( Hom ` P ) |
| 20 |
|
eqid |
|- ( Hom ` ( O Xc. P ) ) = ( Hom ` ( O Xc. P ) ) |
| 21 |
|
simp2 |
|- ( ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> y e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 22 |
|
simp3 |
|- ( ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 23 |
12 17 18 19 20 21 22
|
xpchom |
|- ( ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( y ( Hom ` ( O Xc. P ) ) x ) = ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` x ) ) X. ( ( 2nd ` y ) ( Hom ` P ) ( 2nd ` x ) ) ) ) |
| 24 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 25 |
24 13 15
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` ( C Xc. D ) ) |
| 26 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
| 27 |
24 25 7 9 26 22 21
|
xpchom |
|- ( ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( x ( Hom ` ( C Xc. D ) ) y ) = ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) ) |
| 28 |
11 23 27
|
3eqtr4a |
|- ( ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( y ( Hom ` ( O Xc. P ) ) x ) = ( x ( Hom ` ( C Xc. D ) ) y ) ) |
| 29 |
28
|
reseq2d |
|- ( ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( 1st |` ( y ( Hom ` ( O Xc. P ) ) x ) ) = ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) |
| 30 |
29
|
mpoeq3dva |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> ( y e. ( ( Base ` C ) X. ( Base ` D ) ) , x e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( y ( Hom ` ( O Xc. P ) ) x ) ) ) = ( y e. ( ( Base ` C ) X. ( Base ` D ) ) , x e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) ) |
| 31 |
6 30
|
eqtr4id |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> tpos ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) = ( y e. ( ( Base ` C ) X. ( Base ` D ) ) , x e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( y ( Hom ` ( O Xc. P ) ) x ) ) ) ) |
| 32 |
31
|
opeq2d |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , tpos ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) >. = <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( y e. ( ( Base ` C ) X. ( Base ` D ) ) , x e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( y ( Hom ` ( O Xc. P ) ) x ) ) ) >. ) |
| 33 |
|
simprl |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> C e. Cat ) |
| 34 |
|
simprr |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> D e. Cat ) |
| 35 |
|
eqid |
|- ( C 1stF D ) = ( C 1stF D ) |
| 36 |
24 25 26 33 34 35
|
1stfval |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> ( C 1stF D ) = <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) >. ) |
| 37 |
24 33 34 35
|
1stfcl |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> ( C 1stF D ) e. ( ( C Xc. D ) Func C ) ) |
| 38 |
36 37
|
oppfval3 |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> ( oppFunc ` ( C 1stF D ) ) = <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , tpos ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` ( C Xc. D ) ) y ) ) ) >. ) |
| 39 |
1
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
| 40 |
33 39
|
syl |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> O e. Cat ) |
| 41 |
2
|
oppccat |
|- ( D e. Cat -> P e. Cat ) |
| 42 |
34 41
|
syl |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> P e. Cat ) |
| 43 |
|
eqid |
|- ( O 1stF P ) = ( O 1stF P ) |
| 44 |
12 17 20 40 42 43
|
1stfval |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> ( O 1stF P ) = <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( y e. ( ( Base ` C ) X. ( Base ` D ) ) , x e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( y ( Hom ` ( O Xc. P ) ) x ) ) ) >. ) |
| 45 |
32 38 44
|
3eqtr4d |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> ( oppFunc ` ( C 1stF D ) ) = ( O 1stF P ) ) |
| 46 |
|
df-1stf |
|- 1stF = ( c e. Cat , d e. Cat |-> [_ ( ( Base ` c ) X. ( Base ` d ) ) / b ]_ <. ( 1st |` b ) , ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( c Xc. d ) ) y ) ) ) >. ) |
| 47 |
1 2 3 4 45 46
|
oppc1stflem |
|- ( ph -> ( oppFunc ` ( C 1stF D ) ) = ( O 1stF P ) ) |