| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppc1stf.o |
|- O = ( oppCat ` C ) |
| 2 |
|
oppc1stf.p |
|- P = ( oppCat ` D ) |
| 3 |
|
oppc1stf.c |
|- ( ph -> C e. V ) |
| 4 |
|
oppc1stf.d |
|- ( ph -> D e. W ) |
| 5 |
|
oppc1stflem.1 |
|- ( ( ph /\ ( C e. Cat /\ D e. Cat ) ) -> ( oppFunc ` ( C F D ) ) = ( O F P ) ) |
| 6 |
|
oppc1stflem.f |
|- F = ( c e. Cat , d e. Cat |-> Y ) |
| 7 |
|
eqid |
|- ( oppFunc ` ( C F D ) ) = ( oppFunc ` ( C F D ) ) |
| 8 |
|
simpr |
|- ( ( ph /\ x e. ( oppFunc ` ( C F D ) ) ) -> x e. ( oppFunc ` ( C F D ) ) ) |
| 9 |
7 8
|
eloppf |
|- ( ( ph /\ x e. ( oppFunc ` ( C F D ) ) ) -> ( ( C F D ) =/= (/) /\ ( Rel ( 2nd ` ( C F D ) ) /\ Rel dom ( 2nd ` ( C F D ) ) ) ) ) |
| 10 |
9
|
simpld |
|- ( ( ph /\ x e. ( oppFunc ` ( C F D ) ) ) -> ( C F D ) =/= (/) ) |
| 11 |
6
|
mpondm0 |
|- ( -. ( C e. Cat /\ D e. Cat ) -> ( C F D ) = (/) ) |
| 12 |
11
|
necon1ai |
|- ( ( C F D ) =/= (/) -> ( C e. Cat /\ D e. Cat ) ) |
| 13 |
10 12
|
syl |
|- ( ( ph /\ x e. ( oppFunc ` ( C F D ) ) ) -> ( C e. Cat /\ D e. Cat ) ) |
| 14 |
|
simplr |
|- ( ( ( ph /\ x e. ( oppFunc ` ( C F D ) ) ) /\ ( C e. Cat /\ D e. Cat ) ) -> x e. ( oppFunc ` ( C F D ) ) ) |
| 15 |
5
|
adantlr |
|- ( ( ( ph /\ x e. ( oppFunc ` ( C F D ) ) ) /\ ( C e. Cat /\ D e. Cat ) ) -> ( oppFunc ` ( C F D ) ) = ( O F P ) ) |
| 16 |
14 15
|
eleqtrd |
|- ( ( ( ph /\ x e. ( oppFunc ` ( C F D ) ) ) /\ ( C e. Cat /\ D e. Cat ) ) -> x e. ( O F P ) ) |
| 17 |
13 16
|
mpdan |
|- ( ( ph /\ x e. ( oppFunc ` ( C F D ) ) ) -> x e. ( O F P ) ) |
| 18 |
1 3
|
oppccatb |
|- ( ph -> ( C e. Cat <-> O e. Cat ) ) |
| 19 |
2 4
|
oppccatb |
|- ( ph -> ( D e. Cat <-> P e. Cat ) ) |
| 20 |
18 19
|
anbi12d |
|- ( ph -> ( ( C e. Cat /\ D e. Cat ) <-> ( O e. Cat /\ P e. Cat ) ) ) |
| 21 |
20
|
biimprd |
|- ( ph -> ( ( O e. Cat /\ P e. Cat ) -> ( C e. Cat /\ D e. Cat ) ) ) |
| 22 |
6
|
elmpocl |
|- ( x e. ( O F P ) -> ( O e. Cat /\ P e. Cat ) ) |
| 23 |
21 22
|
impel |
|- ( ( ph /\ x e. ( O F P ) ) -> ( C e. Cat /\ D e. Cat ) ) |
| 24 |
|
simplr |
|- ( ( ( ph /\ x e. ( O F P ) ) /\ ( C e. Cat /\ D e. Cat ) ) -> x e. ( O F P ) ) |
| 25 |
5
|
adantlr |
|- ( ( ( ph /\ x e. ( O F P ) ) /\ ( C e. Cat /\ D e. Cat ) ) -> ( oppFunc ` ( C F D ) ) = ( O F P ) ) |
| 26 |
24 25
|
eleqtrrd |
|- ( ( ( ph /\ x e. ( O F P ) ) /\ ( C e. Cat /\ D e. Cat ) ) -> x e. ( oppFunc ` ( C F D ) ) ) |
| 27 |
23 26
|
mpdan |
|- ( ( ph /\ x e. ( O F P ) ) -> x e. ( oppFunc ` ( C F D ) ) ) |
| 28 |
17 27
|
impbida |
|- ( ph -> ( x e. ( oppFunc ` ( C F D ) ) <-> x e. ( O F P ) ) ) |
| 29 |
28
|
eqrdv |
|- ( ph -> ( oppFunc ` ( C F D ) ) = ( O F P ) ) |