| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppc1stf.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppc1stf.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
oppc1stf.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 4 |
|
oppc1stf.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 5 |
|
oppc1stflem.1 |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) → ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) = ( 𝑂 𝐹 𝑃 ) ) |
| 6 |
|
oppc1stflem.f |
⊢ 𝐹 = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ 𝑌 ) |
| 7 |
|
eqid |
⊢ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) = ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) → 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) |
| 9 |
7 8
|
eloppf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) → ( ( 𝐶 𝐹 𝐷 ) ≠ ∅ ∧ ( Rel ( 2nd ‘ ( 𝐶 𝐹 𝐷 ) ) ∧ Rel dom ( 2nd ‘ ( 𝐶 𝐹 𝐷 ) ) ) ) ) |
| 10 |
9
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) → ( 𝐶 𝐹 𝐷 ) ≠ ∅ ) |
| 11 |
6
|
mpondm0 |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 𝐹 𝐷 ) = ∅ ) |
| 12 |
11
|
necon1ai |
⊢ ( ( 𝐶 𝐹 𝐷 ) ≠ ∅ → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) ∧ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) → 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) |
| 15 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) ∧ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) → ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) = ( 𝑂 𝐹 𝑃 ) ) |
| 16 |
14 15
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) ∧ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) → 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) ) |
| 17 |
13 16
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) → 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) ) |
| 18 |
1 3
|
oppccatb |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝑂 ∈ Cat ) ) |
| 19 |
2 4
|
oppccatb |
⊢ ( 𝜑 → ( 𝐷 ∈ Cat ↔ 𝑃 ∈ Cat ) ) |
| 20 |
18 19
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ↔ ( 𝑂 ∈ Cat ∧ 𝑃 ∈ Cat ) ) ) |
| 21 |
20
|
biimprd |
⊢ ( 𝜑 → ( ( 𝑂 ∈ Cat ∧ 𝑃 ∈ Cat ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) ) |
| 22 |
6
|
elmpocl |
⊢ ( 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) → ( 𝑂 ∈ Cat ∧ 𝑃 ∈ Cat ) ) |
| 23 |
21 22
|
impel |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 24 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) ) ∧ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) → 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) ) |
| 25 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) ) ∧ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) → ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) = ( 𝑂 𝐹 𝑃 ) ) |
| 26 |
24 25
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) ) ∧ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) → 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) |
| 27 |
23 26
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) ) → 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ) |
| 28 |
17 27
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) ↔ 𝑥 ∈ ( 𝑂 𝐹 𝑃 ) ) ) |
| 29 |
28
|
eqrdv |
⊢ ( 𝜑 → ( oppFunc ‘ ( 𝐶 𝐹 𝐷 ) ) = ( 𝑂 𝐹 𝑃 ) ) |