Step |
Hyp |
Ref |
Expression |
1 |
|
mndtccat.c |
|- ( ph -> C = ( MndToCat ` M ) ) |
2 |
|
mndtccat.m |
|- ( ph -> M e. Mnd ) |
3 |
|
oppgoppchom.d |
|- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) |
4 |
|
oppgoppchom.o |
|- O = ( oppCat ` C ) |
5 |
|
oppgoppchom.x |
|- ( ph -> X e. ( Base ` D ) ) |
6 |
|
oppgoppchom.y |
|- ( ph -> Y e. ( Base ` O ) ) |
7 |
|
oppgoppcco.o |
|- ( ph -> .x. = ( comp ` D ) ) |
8 |
|
oppgoppcco.x |
|- ( ph -> .xb = ( comp ` O ) ) |
9 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
10 |
4 9
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
11 |
10
|
eqcomi |
|- ( Base ` O ) = ( Base ` C ) |
12 |
11
|
a1i |
|- ( ph -> ( Base ` O ) = ( Base ` C ) ) |
13 |
|
eqidd |
|- ( ph -> ( comp ` C ) = ( comp ` C ) ) |
14 |
1 2 12 6 6 6 13
|
mndtcco |
|- ( ph -> ( <. Y , Y >. ( comp ` C ) Y ) = ( +g ` M ) ) |
15 |
14
|
tposeqd |
|- ( ph -> tpos ( <. Y , Y >. ( comp ` C ) Y ) = tpos ( +g ` M ) ) |
16 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
17 |
11 16 4 6 6 6
|
oppccofval |
|- ( ph -> ( <. Y , Y >. ( comp ` O ) Y ) = tpos ( <. Y , Y >. ( comp ` C ) Y ) ) |
18 |
|
eqid |
|- ( oppG ` M ) = ( oppG ` M ) |
19 |
18
|
oppgmnd |
|- ( M e. Mnd -> ( oppG ` M ) e. Mnd ) |
20 |
2 19
|
syl |
|- ( ph -> ( oppG ` M ) e. Mnd ) |
21 |
|
eqidd |
|- ( ph -> ( Base ` D ) = ( Base ` D ) ) |
22 |
3 20 21 5 5 5 7
|
mndtcco |
|- ( ph -> ( <. X , X >. .x. X ) = ( +g ` ( oppG ` M ) ) ) |
23 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
24 |
|
eqid |
|- ( +g ` ( oppG ` M ) ) = ( +g ` ( oppG ` M ) ) |
25 |
23 18 24
|
oppgplusfval |
|- ( +g ` ( oppG ` M ) ) = tpos ( +g ` M ) |
26 |
22 25
|
eqtrdi |
|- ( ph -> ( <. X , X >. .x. X ) = tpos ( +g ` M ) ) |
27 |
15 17 26
|
3eqtr4rd |
|- ( ph -> ( <. X , X >. .x. X ) = ( <. Y , Y >. ( comp ` O ) Y ) ) |
28 |
8
|
oveqd |
|- ( ph -> ( <. Y , Y >. .xb Y ) = ( <. Y , Y >. ( comp ` O ) Y ) ) |
29 |
27 28
|
eqtr4d |
|- ( ph -> ( <. X , X >. .x. X ) = ( <. Y , Y >. .xb Y ) ) |