| Step | Hyp | Ref | Expression | 
						
							| 1 |  | osumcllem.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | osumcllem.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | osumcllem.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | osumcllem.p |  |-  .+ = ( +P ` K ) | 
						
							| 5 |  | osumcllem.o |  |-  ._|_ = ( _|_P ` K ) | 
						
							| 6 |  | osumcllem.c |  |-  C = ( PSubCl ` K ) | 
						
							| 7 |  | osumcllem.m |  |-  M = ( X .+ { p } ) | 
						
							| 8 |  | osumcllem.u |  |-  U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) | 
						
							| 9 |  | simp11 |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> K e. HL ) | 
						
							| 10 | 9 | hllatd |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> K e. Lat ) | 
						
							| 11 |  | simp12 |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> X C_ A ) | 
						
							| 12 |  | simp23 |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> p e. A ) | 
						
							| 13 |  | simp22 |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> X =/= (/) ) | 
						
							| 14 |  | inss2 |  |-  ( Y i^i M ) C_ M | 
						
							| 15 | 14 | sseli |  |-  ( q e. ( Y i^i M ) -> q e. M ) | 
						
							| 16 | 15 | 3ad2ant3 |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> q e. M ) | 
						
							| 17 | 16 7 | eleqtrdi |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> q e. ( X .+ { p } ) ) | 
						
							| 18 | 1 2 3 4 | elpaddatiN |  |-  ( ( ( K e. Lat /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( X .+ { p } ) ) ) -> E. r e. X q .<_ ( r .\/ p ) ) | 
						
							| 19 | 10 11 12 13 17 18 | syl32anc |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> E. r e. X q .<_ ( r .\/ p ) ) | 
						
							| 20 |  | simp11 |  |-  ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> ( K e. HL /\ X C_ A /\ Y C_ A ) ) | 
						
							| 21 |  | simp121 |  |-  ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> X C_ ( ._|_ ` Y ) ) | 
						
							| 22 |  | simp123 |  |-  ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> p e. A ) | 
						
							| 23 |  | simp2 |  |-  ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> r e. X ) | 
						
							| 24 |  | inss1 |  |-  ( Y i^i M ) C_ Y | 
						
							| 25 |  | simp13 |  |-  ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> q e. ( Y i^i M ) ) | 
						
							| 26 | 24 25 | sselid |  |-  ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> q e. Y ) | 
						
							| 27 |  | simp3 |  |-  ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> q .<_ ( r .\/ p ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 | osumcllem6N |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ p e. A ) /\ ( r e. X /\ q e. Y /\ q .<_ ( r .\/ p ) ) ) -> p e. ( X .+ Y ) ) | 
						
							| 29 | 20 21 22 23 26 27 28 | syl123anc |  |-  ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> p e. ( X .+ Y ) ) | 
						
							| 30 | 29 | rexlimdv3a |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> ( E. r e. X q .<_ ( r .\/ p ) -> p e. ( X .+ Y ) ) ) | 
						
							| 31 | 19 30 | mpd |  |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> p e. ( X .+ Y ) ) |