| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ot |
|- <. A , B , C >. = <. <. A , B >. , C >. |
| 2 |
|
df-ot |
|- <. D , E , F >. = <. <. D , E >. , F >. |
| 3 |
1 2
|
eqeq12i |
|- ( <. A , B , C >. = <. D , E , F >. <-> <. <. A , B >. , C >. = <. <. D , E >. , F >. ) |
| 4 |
|
opex |
|- <. A , B >. e. _V |
| 5 |
|
opthg |
|- ( ( <. A , B >. e. _V /\ C e. W ) -> ( <. <. A , B >. , C >. = <. <. D , E >. , F >. <-> ( <. A , B >. = <. D , E >. /\ C = F ) ) ) |
| 6 |
4 5
|
mpan |
|- ( C e. W -> ( <. <. A , B >. , C >. = <. <. D , E >. , F >. <-> ( <. A , B >. = <. D , E >. /\ C = F ) ) ) |
| 7 |
|
opthg |
|- ( ( A e. U /\ B e. V ) -> ( <. A , B >. = <. D , E >. <-> ( A = D /\ B = E ) ) ) |
| 8 |
7
|
anbi1d |
|- ( ( A e. U /\ B e. V ) -> ( ( <. A , B >. = <. D , E >. /\ C = F ) <-> ( ( A = D /\ B = E ) /\ C = F ) ) ) |
| 9 |
|
df-3an |
|- ( ( A = D /\ B = E /\ C = F ) <-> ( ( A = D /\ B = E ) /\ C = F ) ) |
| 10 |
8 9
|
bitr4di |
|- ( ( A e. U /\ B e. V ) -> ( ( <. A , B >. = <. D , E >. /\ C = F ) <-> ( A = D /\ B = E /\ C = F ) ) ) |
| 11 |
6 10
|
sylan9bbr |
|- ( ( ( A e. U /\ B e. V ) /\ C e. W ) -> ( <. <. A , B >. , C >. = <. <. D , E >. , F >. <-> ( A = D /\ B = E /\ C = F ) ) ) |
| 12 |
11
|
3impa |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( <. <. A , B >. , C >. = <. <. D , E >. , F >. <-> ( A = D /\ B = E /\ C = F ) ) ) |
| 13 |
3 12
|
bitrid |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( <. A , B , C >. = <. D , E , F >. <-> ( A = D /\ B = E /\ C = F ) ) ) |