| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pairreueq.p |  |-  P = { x e. ~P V | ( # ` x ) = 2 } | 
						
							| 2 |  | fveqeq2 |  |-  ( x = p -> ( ( # ` x ) = 2 <-> ( # ` p ) = 2 ) ) | 
						
							| 3 | 2 1 | elrab2 |  |-  ( p e. P <-> ( p e. ~P V /\ ( # ` p ) = 2 ) ) | 
						
							| 4 | 3 | anbi1i |  |-  ( ( p e. P /\ ph ) <-> ( ( p e. ~P V /\ ( # ` p ) = 2 ) /\ ph ) ) | 
						
							| 5 |  | anass |  |-  ( ( ( p e. ~P V /\ ( # ` p ) = 2 ) /\ ph ) <-> ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) | 
						
							| 6 | 4 5 | bitri |  |-  ( ( p e. P /\ ph ) <-> ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) | 
						
							| 7 | 6 | eubii |  |-  ( E! p ( p e. P /\ ph ) <-> E! p ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) | 
						
							| 8 |  | df-reu |  |-  ( E! p e. P ph <-> E! p ( p e. P /\ ph ) ) | 
						
							| 9 |  | df-reu |  |-  ( E! p e. ~P V ( ( # ` p ) = 2 /\ ph ) <-> E! p ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) | 
						
							| 10 | 7 8 9 | 3bitr4i |  |-  ( E! p e. P ph <-> E! p e. ~P V ( ( # ` p ) = 2 /\ ph ) ) |