Metamath Proof Explorer


Theorem pairreueq

Description: Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023)

Ref Expression
Hypothesis pairreueq.p
|- P = { x e. ~P V | ( # ` x ) = 2 }
Assertion pairreueq
|- ( E! p e. P ph <-> E! p e. ~P V ( ( # ` p ) = 2 /\ ph ) )

Proof

Step Hyp Ref Expression
1 pairreueq.p
 |-  P = { x e. ~P V | ( # ` x ) = 2 }
2 fveqeq2
 |-  ( x = p -> ( ( # ` x ) = 2 <-> ( # ` p ) = 2 ) )
3 2 1 elrab2
 |-  ( p e. P <-> ( p e. ~P V /\ ( # ` p ) = 2 ) )
4 3 anbi1i
 |-  ( ( p e. P /\ ph ) <-> ( ( p e. ~P V /\ ( # ` p ) = 2 ) /\ ph ) )
5 anass
 |-  ( ( ( p e. ~P V /\ ( # ` p ) = 2 ) /\ ph ) <-> ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) )
6 4 5 bitri
 |-  ( ( p e. P /\ ph ) <-> ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) )
7 6 eubii
 |-  ( E! p ( p e. P /\ ph ) <-> E! p ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) )
8 df-reu
 |-  ( E! p e. P ph <-> E! p ( p e. P /\ ph ) )
9 df-reu
 |-  ( E! p e. ~P V ( ( # ` p ) = 2 /\ ph ) <-> E! p ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) )
10 7 8 9 3bitr4i
 |-  ( E! p e. P ph <-> E! p e. ~P V ( ( # ` p ) = 2 /\ ph ) )