Metamath Proof Explorer


Theorem pairreueq

Description: Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023)

Ref Expression
Hypothesis pairreueq.p 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }
Assertion pairreueq ( ∃! 𝑝𝑃 𝜑 ↔ ∃! 𝑝 ∈ 𝒫 𝑉 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 pairreueq.p 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }
2 fveqeq2 ( 𝑥 = 𝑝 → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ 𝑝 ) = 2 ) )
3 2 1 elrab2 ( 𝑝𝑃 ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) )
4 3 anbi1i ( ( 𝑝𝑃𝜑 ) ↔ ( ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ∧ 𝜑 ) )
5 anass ( ( ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ∧ 𝜑 ) ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) )
6 4 5 bitri ( ( 𝑝𝑃𝜑 ) ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) )
7 6 eubii ( ∃! 𝑝 ( 𝑝𝑃𝜑 ) ↔ ∃! 𝑝 ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) )
8 df-reu ( ∃! 𝑝𝑃 𝜑 ↔ ∃! 𝑝 ( 𝑝𝑃𝜑 ) )
9 df-reu ( ∃! 𝑝 ∈ 𝒫 𝑉 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ↔ ∃! 𝑝 ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) )
10 7 8 9 3bitr4i ( ∃! 𝑝𝑃 𝜑 ↔ ∃! 𝑝 ∈ 𝒫 𝑉 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) )