| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pairreueq.p | ⊢ 𝑃  =  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 2 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑝  →  ( ( ♯ ‘ 𝑥 )  =  2  ↔  ( ♯ ‘ 𝑝 )  =  2 ) ) | 
						
							| 3 | 2 1 | elrab2 | ⊢ ( 𝑝  ∈  𝑃  ↔  ( 𝑝  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  2 ) ) | 
						
							| 4 | 3 | anbi1i | ⊢ ( ( 𝑝  ∈  𝑃  ∧  𝜑 )  ↔  ( ( 𝑝  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ∧  𝜑 ) ) | 
						
							| 5 |  | anass | ⊢ ( ( ( 𝑝  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ∧  𝜑 )  ↔  ( 𝑝  ∈  𝒫  𝑉  ∧  ( ( ♯ ‘ 𝑝 )  =  2  ∧  𝜑 ) ) ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( ( 𝑝  ∈  𝑃  ∧  𝜑 )  ↔  ( 𝑝  ∈  𝒫  𝑉  ∧  ( ( ♯ ‘ 𝑝 )  =  2  ∧  𝜑 ) ) ) | 
						
							| 7 | 6 | eubii | ⊢ ( ∃! 𝑝 ( 𝑝  ∈  𝑃  ∧  𝜑 )  ↔  ∃! 𝑝 ( 𝑝  ∈  𝒫  𝑉  ∧  ( ( ♯ ‘ 𝑝 )  =  2  ∧  𝜑 ) ) ) | 
						
							| 8 |  | df-reu | ⊢ ( ∃! 𝑝  ∈  𝑃 𝜑  ↔  ∃! 𝑝 ( 𝑝  ∈  𝑃  ∧  𝜑 ) ) | 
						
							| 9 |  | df-reu | ⊢ ( ∃! 𝑝  ∈  𝒫  𝑉 ( ( ♯ ‘ 𝑝 )  =  2  ∧  𝜑 )  ↔  ∃! 𝑝 ( 𝑝  ∈  𝒫  𝑉  ∧  ( ( ♯ ‘ 𝑝 )  =  2  ∧  𝜑 ) ) ) | 
						
							| 10 | 7 8 9 | 3bitr4i | ⊢ ( ∃! 𝑝  ∈  𝑃 𝜑  ↔  ∃! 𝑝  ∈  𝒫  𝑉 ( ( ♯ ‘ 𝑝 )  =  2  ∧  𝜑 ) ) |