Step |
Hyp |
Ref |
Expression |
1 |
|
pairreueq.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
2 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑝 → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ 𝑝 ) = 2 ) ) |
3 |
2 1
|
elrab2 |
⊢ ( 𝑝 ∈ 𝑃 ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑝 ∈ 𝑃 ∧ 𝜑 ) ↔ ( ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ∧ 𝜑 ) ) |
5 |
|
anass |
⊢ ( ( ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ∧ 𝜑 ) ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) ) |
6 |
4 5
|
bitri |
⊢ ( ( 𝑝 ∈ 𝑃 ∧ 𝜑 ) ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) ) |
7 |
6
|
eubii |
⊢ ( ∃! 𝑝 ( 𝑝 ∈ 𝑃 ∧ 𝜑 ) ↔ ∃! 𝑝 ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) ) |
8 |
|
df-reu |
⊢ ( ∃! 𝑝 ∈ 𝑃 𝜑 ↔ ∃! 𝑝 ( 𝑝 ∈ 𝑃 ∧ 𝜑 ) ) |
9 |
|
df-reu |
⊢ ( ∃! 𝑝 ∈ 𝒫 𝑉 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ↔ ∃! 𝑝 ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) ) |
10 |
7 8 9
|
3bitr4i |
⊢ ( ∃! 𝑝 ∈ 𝑃 𝜑 ↔ ∃! 𝑝 ∈ 𝒫 𝑉 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) |