| Step | Hyp | Ref | Expression | 
						
							| 1 |  | paireqne.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | paireqne.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | paireqne.p | ⊢ 𝑃  =  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 4 |  | raleq | ⊢ ( 𝑝  =  𝑞  →  ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 5 | 4 | reu8 | ⊢ ( ∃! 𝑝  ∈  𝑃 ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ∃ 𝑝  ∈  𝑃 ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 ) ) ) | 
						
							| 6 | 3 | eleq2i | ⊢ ( 𝑝  ∈  𝑃  ↔  𝑝  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 7 |  | elss2prb | ⊢ ( 𝑝  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( 𝑝  ∈  𝑃  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 9 |  | raleq | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ∀ 𝑥  ∈  { 𝑎 ,  𝑏 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 10 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 11 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 12 |  | eqeq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  =  𝐴  ↔  𝑎  =  𝐴 ) ) | 
						
							| 13 |  | eqeq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  =  𝐵  ↔  𝑎  =  𝐵 ) ) | 
						
							| 14 | 12 13 | orbi12d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 ) ) ) | 
						
							| 15 |  | eqeq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥  =  𝐴  ↔  𝑏  =  𝐴 ) ) | 
						
							| 16 |  | eqeq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥  =  𝐵  ↔  𝑏  =  𝐵 ) ) | 
						
							| 17 | 15 16 | orbi12d | ⊢ ( 𝑥  =  𝑏  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) ) | 
						
							| 18 | 10 11 14 17 | ralpr | ⊢ ( ∀ 𝑥  ∈  { 𝑎 ,  𝑏 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) ) | 
						
							| 19 | 9 18 | bitrdi | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) ) ) | 
						
							| 20 |  | eqeq1 | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝑝  =  𝑞  ↔  { 𝑎 ,  𝑏 }  =  𝑞 ) ) | 
						
							| 21 | 20 | imbi2d | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 )  ↔  ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) ) | 
						
							| 22 | 21 | ralbidv | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 )  ↔  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) ) | 
						
							| 23 | 19 22 | anbi12d | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 ) )  ↔  ( ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) ) ) | 
						
							| 24 | 23 | ad2antll | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 ) )  ↔  ( ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) ) ) | 
						
							| 25 | 1 2 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 26 |  | prelpwi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  { 𝐴 ,  𝐵 }  ∈  𝒫  𝑉 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ∈  𝒫  𝑉 ) | 
						
							| 28 | 27 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  { 𝐴 ,  𝐵 }  ∈  𝒫  𝑉 ) | 
						
							| 29 |  | hashprg | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝑎  ≠  𝑏  ↔  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( 𝑎  ≠  𝑏  ↔  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 31 | 30 | biimpd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( 𝑎  ≠  𝑏  →  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 32 | 31 | com12 | ⊢ ( 𝑎  ≠  𝑏  →  ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) | 
						
							| 36 |  | eqtr3 | ⊢ ( ( 𝑏  =  𝐴  ∧  𝑎  =  𝐴 )  →  𝑏  =  𝑎 ) | 
						
							| 37 |  | eqneqall | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ≠  𝑏  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 38 | 37 | impd | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 39 | 38 | a1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 40 | 39 | impd | ⊢ ( 𝑎  =  𝑏  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 41 | 40 | equcoms | ⊢ ( 𝑏  =  𝑎  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 42 | 36 41 | syl | ⊢ ( ( 𝑏  =  𝐴  ∧  𝑎  =  𝐴 )  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 43 | 42 | ex | ⊢ ( 𝑏  =  𝐴  →  ( 𝑎  =  𝐴  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 44 |  | preq12 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 45 | 44 | eqcomd | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 46 | 45 | a1d | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 47 | 46 | expcom | ⊢ ( 𝑏  =  𝐵  →  ( 𝑎  =  𝐴  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 48 | 43 47 | jaoi | ⊢ ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  →  ( 𝑎  =  𝐴  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 49 | 48 | com12 | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 50 |  | prcom | ⊢ { 𝑎 ,  𝑏 }  =  { 𝑏 ,  𝑎 } | 
						
							| 51 |  | preq12 | ⊢ ( ( 𝑏  =  𝐴  ∧  𝑎  =  𝐵 )  →  { 𝑏 ,  𝑎 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 52 | 50 51 | eqtrid | ⊢ ( ( 𝑏  =  𝐴  ∧  𝑎  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 53 | 52 | eqcomd | ⊢ ( ( 𝑏  =  𝐴  ∧  𝑎  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 54 | 53 | a1d | ⊢ ( ( 𝑏  =  𝐴  ∧  𝑎  =  𝐵 )  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 55 | 54 | ex | ⊢ ( 𝑏  =  𝐴  →  ( 𝑎  =  𝐵  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 56 |  | eqtr3 | ⊢ ( ( 𝑏  =  𝐵  ∧  𝑎  =  𝐵 )  →  𝑏  =  𝑎 ) | 
						
							| 57 | 56 41 | syl | ⊢ ( ( 𝑏  =  𝐵  ∧  𝑎  =  𝐵 )  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 58 | 57 | ex | ⊢ ( 𝑏  =  𝐵  →  ( 𝑎  =  𝐵  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 59 | 55 58 | jaoi | ⊢ ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  →  ( 𝑎  =  𝐵  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 60 | 59 | com12 | ⊢ ( 𝑎  =  𝐵  →  ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 61 | 49 60 | jaoi | ⊢ ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  →  ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 62 | 61 | imp | ⊢ ( ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) )  →  ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 63 | 62 | impcom | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 64 | 63 | fveqeq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2  ↔  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 65 | 35 64 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) | 
						
							| 66 | 28 65 | jca | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( { 𝐴 ,  𝐵 }  ∈  𝒫  𝑉  ∧  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 67 | 3 | eleq2i | ⊢ ( { 𝐴 ,  𝐵 }  ∈  𝑃  ↔  { 𝐴 ,  𝐵 }  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 68 |  | fveqeq2 | ⊢ ( 𝑥  =  { 𝐴 ,  𝐵 }  →  ( ( ♯ ‘ 𝑥 )  =  2  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 69 | 68 | elrab | ⊢ ( { 𝐴 ,  𝐵 }  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  ( { 𝐴 ,  𝐵 }  ∈  𝒫  𝑉  ∧  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 70 | 67 69 | bitri | ⊢ ( { 𝐴 ,  𝐵 }  ∈  𝑃  ↔  ( { 𝐴 ,  𝐵 }  ∈  𝒫  𝑉  ∧  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 71 | 66 70 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  { 𝐴 ,  𝐵 }  ∈  𝑃 ) | 
						
							| 72 |  | raleq | ⊢ ( 𝑞  =  { 𝐴 ,  𝐵 }  →  ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 73 |  | eqeq2 | ⊢ ( 𝑞  =  { 𝐴 ,  𝐵 }  →  ( { 𝑎 ,  𝑏 }  =  𝑞  ↔  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 74 | 72 73 | imbi12d | ⊢ ( 𝑞  =  { 𝐴 ,  𝐵 }  →  ( ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 )  ↔  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 75 | 74 | rspcv | ⊢ ( { 𝐴 ,  𝐵 }  ∈  𝑃  →  ( ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 )  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 76 | 71 75 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 )  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 77 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  𝐴  ↔  𝐴  =  𝐴 ) ) | 
						
							| 78 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 79 | 77 78 | orbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 80 |  | eqeq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  =  𝐴  ↔  𝐵  =  𝐴 ) ) | 
						
							| 81 |  | eqeq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  =  𝐵  ↔  𝐵  =  𝐵 ) ) | 
						
							| 82 | 80 81 | orbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) ) ) | 
						
							| 83 | 79 82 | ralprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  ∧  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) ) ) ) | 
						
							| 84 | 25 83 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  ∧  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) ) ) ) | 
						
							| 85 | 84 | imbi1d | ⊢ ( 𝜑  →  ( ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } )  ↔  ( ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  ∧  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 86 | 85 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } )  ↔  ( ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  ∧  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 87 |  | eqid | ⊢ 𝐴  =  𝐴 | 
						
							| 88 | 87 | orci | ⊢ ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 ) | 
						
							| 89 |  | eqid | ⊢ 𝐵  =  𝐵 | 
						
							| 90 | 89 | olci | ⊢ ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) | 
						
							| 91 |  | pm5.5 | ⊢ ( ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  ∧  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) )  →  ( ( ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  ∧  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } )  ↔  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 92 | 88 90 91 | mp2an | ⊢ ( ( ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  ∧  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } )  ↔  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 93 | 10 11 | pm3.2i | ⊢ ( 𝑎  ∈  V  ∧  𝑏  ∈  V ) | 
						
							| 94 |  | preq12bg | ⊢ ( ( ( 𝑎  ∈  V  ∧  𝑏  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 }  ↔  ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  ∨  ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 ) ) ) ) | 
						
							| 95 | 93 25 94 | sylancr | ⊢ ( 𝜑  →  ( { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 }  ↔  ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  ∨  ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 ) ) ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 }  ↔  ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  ∨  ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 ) ) ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 }  ↔  ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  ∨  ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 ) ) ) ) | 
						
							| 98 |  | eqeq12 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎  =  𝑏  ↔  𝐴  =  𝐵 ) ) | 
						
							| 99 | 98 | necon3bid | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎  ≠  𝑏  ↔  𝐴  ≠  𝐵 ) ) | 
						
							| 100 | 99 | biimpd | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎  ≠  𝑏  →  𝐴  ≠  𝐵 ) ) | 
						
							| 101 |  | eqeq12 | ⊢ ( ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 )  →  ( 𝑎  =  𝑏  ↔  𝐵  =  𝐴 ) ) | 
						
							| 102 | 101 | necon3bid | ⊢ ( ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 )  →  ( 𝑎  ≠  𝑏  ↔  𝐵  ≠  𝐴 ) ) | 
						
							| 103 | 102 | biimpd | ⊢ ( ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 )  →  ( 𝑎  ≠  𝑏  →  𝐵  ≠  𝐴 ) ) | 
						
							| 104 |  | necom | ⊢ ( 𝐴  ≠  𝐵  ↔  𝐵  ≠  𝐴 ) | 
						
							| 105 | 103 104 | imbitrrdi | ⊢ ( ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 )  →  ( 𝑎  ≠  𝑏  →  𝐴  ≠  𝐵 ) ) | 
						
							| 106 | 100 105 | jaoi | ⊢ ( ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  ∨  ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 ) )  →  ( 𝑎  ≠  𝑏  →  𝐴  ≠  𝐵 ) ) | 
						
							| 107 | 106 | com12 | ⊢ ( 𝑎  ≠  𝑏  →  ( ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  ∨  ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 ) )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 108 | 107 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  ∨  ( 𝑎  =  𝐵  ∧  𝑏  =  𝐴 ) )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 109 | 97 108 | sylbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 }  →  𝐴  ≠  𝐵 ) ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 }  →  𝐴  ≠  𝐵 ) ) | 
						
							| 111 | 92 110 | biimtrid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( ( ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  ∧  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 112 | 86 111 | sylbid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 113 | 76 112 | syld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) )  →  ( ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 114 | 113 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) )  →  ( ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 )  →  𝐴  ≠  𝐵 ) ) ) | 
						
							| 115 | 114 | impd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ( ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  ∧  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  𝑞 ) )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 116 | 24 115 | sylbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 ) )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 117 | 116 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  ( ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 ) )  →  𝐴  ≠  𝐵 ) ) ) | 
						
							| 118 | 117 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  ( ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 ) )  →  𝐴  ≠  𝐵 ) ) ) | 
						
							| 119 | 8 118 | biimtrid | ⊢ ( 𝜑  →  ( 𝑝  ∈  𝑃  →  ( ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 ) )  →  𝐴  ≠  𝐵 ) ) ) | 
						
							| 120 | 119 | imp | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝑃 )  →  ( ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 ) )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 121 | 120 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  𝑃 ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑞  ∈  𝑃 ( ∀ 𝑥  ∈  𝑞 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑞 ) )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 122 | 5 121 | biimtrid | ⊢ ( 𝜑  →  ( ∃! 𝑝  ∈  𝑃 ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 123 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  ∈  𝒫  𝑉 ) | 
						
							| 124 |  | hashprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  ≠  𝐵  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 125 | 25 124 | syl | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 126 | 125 | biimpd | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 127 | 126 | imp | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) | 
						
							| 128 | 123 127 | jca | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  ∈  𝒫  𝑉  ∧  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 129 | 128 70 | sylibr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  ∈  𝑃 ) | 
						
							| 130 |  | raleq | ⊢ ( 𝑝  =  { 𝐴 ,  𝐵 }  →  ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 131 |  | eqeq1 | ⊢ ( 𝑝  =  { 𝐴 ,  𝐵 }  →  ( 𝑝  =  𝑦  ↔  { 𝐴 ,  𝐵 }  =  𝑦 ) ) | 
						
							| 132 | 131 | imbi2d | ⊢ ( 𝑝  =  { 𝐴 ,  𝐵 }  →  ( ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑦 )  ↔  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) | 
						
							| 133 | 132 | ralbidv | ⊢ ( 𝑝  =  { 𝐴 ,  𝐵 }  →  ( ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) | 
						
							| 134 | 130 133 | anbi12d | ⊢ ( 𝑝  =  { 𝐴 ,  𝐵 }  →  ( ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑦 ) )  ↔  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  𝑝  =  { 𝐴 ,  𝐵 } )  →  ( ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑦 ) )  ↔  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) ) | 
						
							| 136 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 137 | 136 | elpr | ⊢ ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↔  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) | 
						
							| 138 | 137 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↔  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 139 | 138 | biimpd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  →  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 140 | 139 | imp | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  𝑥  ∈  { 𝐴 ,  𝐵 } )  →  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) | 
						
							| 141 | 140 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) | 
						
							| 142 | 3 | eleq2i | ⊢ ( 𝑦  ∈  𝑃  ↔  𝑦  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 143 |  | elss2prb | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 144 | 142 143 | bitri | ⊢ ( 𝑦  ∈  𝑃  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 145 |  | prid1g | ⊢ ( 𝑎  ∈  𝑉  →  𝑎  ∈  { 𝑎 ,  𝑏 } ) | 
						
							| 146 | 145 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  𝑎  ∈  { 𝑎 ,  𝑏 } ) | 
						
							| 147 | 146 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  𝑎  ∈  { 𝑎 ,  𝑏 } ) | 
						
							| 148 |  | eleq2 | ⊢ ( 𝑦  =  { 𝑎 ,  𝑏 }  →  ( 𝑎  ∈  𝑦  ↔  𝑎  ∈  { 𝑎 ,  𝑏 } ) ) | 
						
							| 149 | 148 | ad2antll | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  ( 𝑎  ∈  𝑦  ↔  𝑎  ∈  { 𝑎 ,  𝑏 } ) ) | 
						
							| 150 | 147 149 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  𝑎  ∈  𝑦 ) | 
						
							| 151 | 14 | rspcv | ⊢ ( 𝑎  ∈  𝑦  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 ) ) ) | 
						
							| 152 | 150 151 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 ) ) ) | 
						
							| 153 |  | prid2g | ⊢ ( 𝑏  ∈  𝑉  →  𝑏  ∈  { 𝑎 ,  𝑏 } ) | 
						
							| 154 | 153 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  𝑏  ∈  { 𝑎 ,  𝑏 } ) | 
						
							| 155 | 154 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  𝑏  ∈  { 𝑎 ,  𝑏 } ) | 
						
							| 156 |  | eleq2 | ⊢ ( 𝑦  =  { 𝑎 ,  𝑏 }  →  ( 𝑏  ∈  𝑦  ↔  𝑏  ∈  { 𝑎 ,  𝑏 } ) ) | 
						
							| 157 | 156 | ad2antll | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  ( 𝑏  ∈  𝑦  ↔  𝑏  ∈  { 𝑎 ,  𝑏 } ) ) | 
						
							| 158 | 155 157 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  𝑏  ∈  𝑦 ) | 
						
							| 159 | 17 | rspcv | ⊢ ( 𝑏  ∈  𝑦  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) ) | 
						
							| 160 | 158 159 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 ) ) ) | 
						
							| 161 |  | simplrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  ∧  ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 ) ) )  →  𝑦  =  { 𝑎 ,  𝑏 } ) | 
						
							| 162 |  | eqtr3 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐴 )  →  𝑎  =  𝑏 ) | 
						
							| 163 |  | eqneqall | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ≠  𝑏  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 164 | 163 | com12 | ⊢ ( 𝑎  ≠  𝑏  →  ( 𝑎  =  𝑏  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 165 | 164 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  ( 𝑎  =  𝑏  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 166 | 165 | com12 | ⊢ ( 𝑎  =  𝑏  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 167 | 162 166 | syl | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐴 )  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 168 | 167 | ex | ⊢ ( 𝑎  =  𝐴  →  ( 𝑏  =  𝐴  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 169 | 52 | a1d | ⊢ ( ( 𝑏  =  𝐴  ∧  𝑎  =  𝐵 )  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 170 | 169 | expcom | ⊢ ( 𝑎  =  𝐵  →  ( 𝑏  =  𝐴  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 171 | 168 170 | jaoi | ⊢ ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  →  ( 𝑏  =  𝐴  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 172 | 171 | com12 | ⊢ ( 𝑏  =  𝐴  →  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 173 | 44 | a1d | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 174 | 173 | ex | ⊢ ( 𝑎  =  𝐴  →  ( 𝑏  =  𝐵  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 175 |  | eqtr3 | ⊢ ( ( 𝑎  =  𝐵  ∧  𝑏  =  𝐵 )  →  𝑎  =  𝑏 ) | 
						
							| 176 | 175 166 | syl | ⊢ ( ( 𝑎  =  𝐵  ∧  𝑏  =  𝐵 )  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 177 | 176 | ex | ⊢ ( 𝑎  =  𝐵  →  ( 𝑏  =  𝐵  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 178 | 174 177 | jaoi | ⊢ ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  →  ( 𝑏  =  𝐵  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 179 | 178 | com12 | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 180 | 172 179 | jaoi | ⊢ ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  →  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 181 | 180 | imp | ⊢ ( ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  ∧  ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 ) )  →  ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 182 | 181 | impcom | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  ∧  ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 ) ) )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 183 | 161 182 | eqtr2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  ∧  ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  ∧  ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 ) ) )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) | 
						
							| 184 | 183 | exp32 | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  ( ( 𝑏  =  𝐴  ∨  𝑏  =  𝐵 )  →  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) | 
						
							| 185 | 160 184 | syld | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( ( 𝑎  =  𝐴  ∨  𝑎  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) | 
						
							| 186 | 152 185 | mpdd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } ) )  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) | 
						
							| 187 | 186 | ex | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } )  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) | 
						
							| 188 | 187 | rexlimdvva | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑦  =  { 𝑎 ,  𝑏 } )  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) | 
						
							| 189 | 144 188 | biimtrid | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑦  ∈  𝑃  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) | 
						
							| 190 | 189 | imp | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  ∧  𝑦  ∈  𝑃 )  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) | 
						
							| 191 | 190 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) | 
						
							| 192 | 141 191 | jca | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝑦 ) ) ) | 
						
							| 193 | 129 135 192 | rspcedvd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ∃ 𝑝  ∈  𝑃 ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑦 ) ) ) | 
						
							| 194 |  | raleq | ⊢ ( 𝑝  =  𝑦  →  ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 195 | 194 | reu8 | ⊢ ( ∃! 𝑝  ∈  𝑃 ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ∃ 𝑝  ∈  𝑃 ( ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑃 ( ∀ 𝑥  ∈  𝑦 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝑝  =  𝑦 ) ) ) | 
						
							| 196 | 193 195 | sylibr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ∃! 𝑝  ∈  𝑃 ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) | 
						
							| 197 | 196 | ex | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  →  ∃! 𝑝  ∈  𝑃 ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 198 | 122 197 | impbid | ⊢ ( 𝜑  →  ( ∃! 𝑝  ∈  𝑃 ∀ 𝑥  ∈  𝑝 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  𝐴  ≠  𝐵 ) ) |