Step |
Hyp |
Ref |
Expression |
1 |
|
paireqne.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
paireqne.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
3 |
|
paireqne.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
4 |
|
raleq |
⊢ ( 𝑝 = 𝑞 → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
5 |
4
|
reu8 |
⊢ ( ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∃ 𝑝 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) ) |
6 |
3
|
eleq2i |
⊢ ( 𝑝 ∈ 𝑃 ↔ 𝑝 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
7 |
|
elss2prb |
⊢ ( 𝑝 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) |
8 |
6 7
|
bitri |
⊢ ( 𝑝 ∈ 𝑃 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) |
9 |
|
raleq |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ { 𝑎 , 𝑏 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
10 |
|
vex |
⊢ 𝑎 ∈ V |
11 |
|
vex |
⊢ 𝑏 ∈ V |
12 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 𝐴 ↔ 𝑎 = 𝐴 ) ) |
13 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 𝐵 ↔ 𝑎 = 𝐵 ) ) |
14 |
12 13
|
orbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 = 𝐴 ↔ 𝑏 = 𝐴 ) ) |
16 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 = 𝐵 ↔ 𝑏 = 𝐵 ) ) |
17 |
15 16
|
orbi12d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) |
18 |
10 11 14 17
|
ralpr |
⊢ ( ∀ 𝑥 ∈ { 𝑎 , 𝑏 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) |
19 |
9 18
|
bitrdi |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) ) |
20 |
|
eqeq1 |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝑝 = 𝑞 ↔ { 𝑎 , 𝑏 } = 𝑞 ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ↔ ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ↔ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
23 |
19 22
|
anbi12d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) ↔ ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) ) ) |
24 |
23
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) ↔ ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) ) ) |
25 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
26 |
|
prelpwi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ) |
28 |
27
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ) |
29 |
|
hashprg |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
31 |
30
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 ≠ 𝑏 → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
32 |
31
|
com12 |
⊢ ( 𝑎 ≠ 𝑏 → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
34 |
33
|
impcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
35 |
34
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
36 |
|
eqtr3 |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐴 ) → 𝑏 = 𝑎 ) |
37 |
|
eqneqall |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ≠ 𝑏 → ( 𝑝 = { 𝑎 , 𝑏 } → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
38 |
37
|
impd |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
39 |
38
|
a1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
40 |
39
|
impd |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
41 |
40
|
equcoms |
⊢ ( 𝑏 = 𝑎 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
42 |
36 41
|
syl |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐴 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
43 |
42
|
ex |
⊢ ( 𝑏 = 𝐴 → ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
44 |
|
preq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) |
45 |
44
|
eqcomd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
46 |
45
|
a1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
47 |
46
|
expcom |
⊢ ( 𝑏 = 𝐵 → ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
48 |
43 47
|
jaoi |
⊢ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
49 |
48
|
com12 |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
50 |
|
prcom |
⊢ { 𝑎 , 𝑏 } = { 𝑏 , 𝑎 } |
51 |
|
preq12 |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → { 𝑏 , 𝑎 } = { 𝐴 , 𝐵 } ) |
52 |
50 51
|
syl5eq |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) |
53 |
52
|
eqcomd |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
54 |
53
|
a1d |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
55 |
54
|
ex |
⊢ ( 𝑏 = 𝐴 → ( 𝑎 = 𝐵 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
56 |
|
eqtr3 |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐵 ) → 𝑏 = 𝑎 ) |
57 |
56 41
|
syl |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
58 |
57
|
ex |
⊢ ( 𝑏 = 𝐵 → ( 𝑎 = 𝐵 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
59 |
55 58
|
jaoi |
⊢ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( 𝑎 = 𝐵 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
60 |
59
|
com12 |
⊢ ( 𝑎 = 𝐵 → ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
61 |
49 60
|
jaoi |
⊢ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
62 |
61
|
imp |
⊢ ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
63 |
62
|
impcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
64 |
63
|
fveqeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
65 |
35 64
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
66 |
28 65
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
67 |
3
|
eleq2i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝑃 ↔ { 𝐴 , 𝐵 } ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
68 |
|
fveqeq2 |
⊢ ( 𝑥 = { 𝐴 , 𝐵 } → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
69 |
68
|
elrab |
⊢ ( { 𝐴 , 𝐵 } ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
70 |
67 69
|
bitri |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝑃 ↔ ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
71 |
66 70
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → { 𝐴 , 𝐵 } ∈ 𝑃 ) |
72 |
|
raleq |
⊢ ( 𝑞 = { 𝐴 , 𝐵 } → ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
73 |
|
eqeq2 |
⊢ ( 𝑞 = { 𝐴 , 𝐵 } → ( { 𝑎 , 𝑏 } = 𝑞 ↔ { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
74 |
72 73
|
imbi12d |
⊢ ( 𝑞 = { 𝐴 , 𝐵 } → ( ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
75 |
74
|
rspcv |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝑃 → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
76 |
71 75
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
77 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐴 ↔ 𝐴 = 𝐴 ) ) |
78 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
79 |
77 78
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ) ) |
80 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐴 ↔ 𝐵 = 𝐴 ) ) |
81 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐵 ↔ 𝐵 = 𝐵 ) ) |
82 |
80 81
|
orbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) |
83 |
79 82
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) ) |
84 |
25 83
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) ) |
85 |
84
|
imbi1d |
⊢ ( 𝜑 → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ↔ ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
86 |
85
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ↔ ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
87 |
|
eqid |
⊢ 𝐴 = 𝐴 |
88 |
87
|
orci |
⊢ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) |
89 |
|
eqid |
⊢ 𝐵 = 𝐵 |
90 |
89
|
olci |
⊢ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) |
91 |
|
pm5.5 |
⊢ ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → ( ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ↔ { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
92 |
88 90 91
|
mp2an |
⊢ ( ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ↔ { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) |
93 |
10 11
|
pm3.2i |
⊢ ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) |
94 |
|
preq12bg |
⊢ ( ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) ) ) |
95 |
93 25 94
|
sylancr |
⊢ ( 𝜑 → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) ) ) |
97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) ) ) |
98 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 = 𝑏 ↔ 𝐴 = 𝐵 ) ) |
99 |
98
|
necon3bid |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵 ) ) |
100 |
99
|
biimpd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ≠ 𝑏 → 𝐴 ≠ 𝐵 ) ) |
101 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) → ( 𝑎 = 𝑏 ↔ 𝐵 = 𝐴 ) ) |
102 |
101
|
necon3bid |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) → ( 𝑎 ≠ 𝑏 ↔ 𝐵 ≠ 𝐴 ) ) |
103 |
102
|
biimpd |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) → ( 𝑎 ≠ 𝑏 → 𝐵 ≠ 𝐴 ) ) |
104 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
105 |
103 104
|
syl6ibr |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) → ( 𝑎 ≠ 𝑏 → 𝐴 ≠ 𝐵 ) ) |
106 |
100 105
|
jaoi |
⊢ ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) → ( 𝑎 ≠ 𝑏 → 𝐴 ≠ 𝐵 ) ) |
107 |
106
|
com12 |
⊢ ( 𝑎 ≠ 𝑏 → ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) → 𝐴 ≠ 𝐵 ) ) |
108 |
107
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) → 𝐴 ≠ 𝐵 ) ) |
109 |
97 108
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } → 𝐴 ≠ 𝐵 ) ) |
110 |
109
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } → 𝐴 ≠ 𝐵 ) ) |
111 |
92 110
|
syl5bi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) → 𝐴 ≠ 𝐵 ) ) |
112 |
86 111
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) → 𝐴 ≠ 𝐵 ) ) |
113 |
76 112
|
syld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) → 𝐴 ≠ 𝐵 ) ) |
114 |
113
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) → 𝐴 ≠ 𝐵 ) ) ) |
115 |
114
|
impd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) |
116 |
24 115
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) |
117 |
116
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) ) |
118 |
117
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) ) |
119 |
8 118
|
syl5bi |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝑃 → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) ) |
120 |
119
|
imp |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) |
121 |
120
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) |
122 |
5 121
|
syl5bi |
⊢ ( 𝜑 → ( ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝐴 ≠ 𝐵 ) ) |
123 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ) |
124 |
|
hashprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
125 |
25 124
|
syl |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
126 |
125
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
127 |
126
|
imp |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
128 |
123 127
|
jca |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
129 |
128 70
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ∈ 𝑃 ) |
130 |
|
raleq |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
131 |
|
eqeq1 |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( 𝑝 = 𝑦 ↔ { 𝐴 , 𝐵 } = 𝑦 ) ) |
132 |
131
|
imbi2d |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
133 |
132
|
ralbidv |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
134 |
130 133
|
anbi12d |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) ) |
135 |
134
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑝 = { 𝐴 , 𝐵 } ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) ) |
136 |
|
vex |
⊢ 𝑥 ∈ V |
137 |
136
|
elpr |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
138 |
137
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
139 |
138
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 } → ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
140 |
139
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ { 𝐴 , 𝐵 } ) → ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
141 |
140
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
142 |
3
|
eleq2i |
⊢ ( 𝑦 ∈ 𝑃 ↔ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
143 |
|
elss2prb |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) |
144 |
142 143
|
bitri |
⊢ ( 𝑦 ∈ 𝑃 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) |
145 |
|
prid1g |
⊢ ( 𝑎 ∈ 𝑉 → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
146 |
145
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
147 |
146
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
148 |
|
eleq2 |
⊢ ( 𝑦 = { 𝑎 , 𝑏 } → ( 𝑎 ∈ 𝑦 ↔ 𝑎 ∈ { 𝑎 , 𝑏 } ) ) |
149 |
148
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( 𝑎 ∈ 𝑦 ↔ 𝑎 ∈ { 𝑎 , 𝑏 } ) ) |
150 |
147 149
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → 𝑎 ∈ 𝑦 ) |
151 |
14
|
rspcv |
⊢ ( 𝑎 ∈ 𝑦 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) |
152 |
150 151
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) |
153 |
|
prid2g |
⊢ ( 𝑏 ∈ 𝑉 → 𝑏 ∈ { 𝑎 , 𝑏 } ) |
154 |
153
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ { 𝑎 , 𝑏 } ) |
155 |
154
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → 𝑏 ∈ { 𝑎 , 𝑏 } ) |
156 |
|
eleq2 |
⊢ ( 𝑦 = { 𝑎 , 𝑏 } → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) |
157 |
156
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) |
158 |
155 157
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → 𝑏 ∈ 𝑦 ) |
159 |
17
|
rspcv |
⊢ ( 𝑏 ∈ 𝑦 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) |
160 |
158 159
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) |
161 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ∧ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) → 𝑦 = { 𝑎 , 𝑏 } ) |
162 |
|
eqtr3 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐴 ) → 𝑎 = 𝑏 ) |
163 |
|
eqneqall |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ≠ 𝑏 → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
164 |
163
|
com12 |
⊢ ( 𝑎 ≠ 𝑏 → ( 𝑎 = 𝑏 → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
165 |
164
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( 𝑎 = 𝑏 → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
166 |
165
|
com12 |
⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
167 |
162 166
|
syl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐴 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
168 |
167
|
ex |
⊢ ( 𝑎 = 𝐴 → ( 𝑏 = 𝐴 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
169 |
52
|
a1d |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
170 |
169
|
expcom |
⊢ ( 𝑎 = 𝐵 → ( 𝑏 = 𝐴 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
171 |
168 170
|
jaoi |
⊢ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( 𝑏 = 𝐴 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
172 |
171
|
com12 |
⊢ ( 𝑏 = 𝐴 → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
173 |
44
|
a1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
174 |
173
|
ex |
⊢ ( 𝑎 = 𝐴 → ( 𝑏 = 𝐵 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
175 |
|
eqtr3 |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐵 ) → 𝑎 = 𝑏 ) |
176 |
175 166
|
syl |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
177 |
176
|
ex |
⊢ ( 𝑎 = 𝐵 → ( 𝑏 = 𝐵 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
178 |
174 177
|
jaoi |
⊢ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( 𝑏 = 𝐵 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
179 |
178
|
com12 |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
180 |
172 179
|
jaoi |
⊢ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
181 |
180
|
imp |
⊢ ( ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ∧ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
182 |
181
|
impcom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ∧ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) |
183 |
161 182
|
eqtr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ∧ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) → { 𝐴 , 𝐵 } = 𝑦 ) |
184 |
183
|
exp32 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
185 |
160 184
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
186 |
152 185
|
mpdd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) |
187 |
186
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
188 |
187
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
189 |
144 188
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑦 ∈ 𝑃 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
190 |
189
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑦 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) |
191 |
190
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) |
192 |
141 191
|
jca |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
193 |
129 135 192
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑝 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ) ) |
194 |
|
raleq |
⊢ ( 𝑝 = 𝑦 → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
195 |
194
|
reu8 |
⊢ ( ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∃ 𝑝 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ) ) |
196 |
193 195
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
197 |
196
|
ex |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
198 |
122 197
|
impbid |
⊢ ( 𝜑 → ( ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ 𝐴 ≠ 𝐵 ) ) |