Metamath Proof Explorer


Theorem pairreueq

Description: Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023)

Ref Expression
Hypothesis pairreueq.p P = x 𝒫 V | x = 2
Assertion pairreueq ∃! p P φ ∃! p 𝒫 V p = 2 φ

Proof

Step Hyp Ref Expression
1 pairreueq.p P = x 𝒫 V | x = 2
2 fveqeq2 x = p x = 2 p = 2
3 2 1 elrab2 p P p 𝒫 V p = 2
4 3 anbi1i p P φ p 𝒫 V p = 2 φ
5 anass p 𝒫 V p = 2 φ p 𝒫 V p = 2 φ
6 4 5 bitri p P φ p 𝒫 V p = 2 φ
7 6 eubii ∃! p p P φ ∃! p p 𝒫 V p = 2 φ
8 df-reu ∃! p P φ ∃! p p P φ
9 df-reu ∃! p 𝒫 V p = 2 φ ∃! p p 𝒫 V p = 2 φ
10 7 8 9 3bitr4i ∃! p P φ ∃! p 𝒫 V p = 2 φ