| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcgcd1 |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = ( P pCnt A ) ) |
| 2 |
|
iftrue |
|- ( ( P pCnt A ) <_ ( P pCnt B ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt A ) ) |
| 3 |
2
|
adantl |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt A ) ) |
| 4 |
1 3
|
eqtr4d |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) ) |
| 5 |
|
gcdcom |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
| 6 |
5
|
3adant1 |
|- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
| 7 |
6
|
adantr |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( A gcd B ) = ( B gcd A ) ) |
| 8 |
7
|
oveq2d |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = ( P pCnt ( B gcd A ) ) ) |
| 9 |
|
iffalse |
|- ( -. ( P pCnt A ) <_ ( P pCnt B ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt B ) ) |
| 10 |
9
|
adantl |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt B ) ) |
| 11 |
|
zq |
|- ( A e. ZZ -> A e. QQ ) |
| 12 |
|
pcxcl |
|- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* ) |
| 13 |
11 12
|
sylan2 |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( P pCnt A ) e. RR* ) |
| 14 |
13
|
3adant3 |
|- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( P pCnt A ) e. RR* ) |
| 15 |
|
zq |
|- ( B e. ZZ -> B e. QQ ) |
| 16 |
|
pcxcl |
|- ( ( P e. Prime /\ B e. QQ ) -> ( P pCnt B ) e. RR* ) |
| 17 |
15 16
|
sylan2 |
|- ( ( P e. Prime /\ B e. ZZ ) -> ( P pCnt B ) e. RR* ) |
| 18 |
|
xrletri |
|- ( ( ( P pCnt A ) e. RR* /\ ( P pCnt B ) e. RR* ) -> ( ( P pCnt A ) <_ ( P pCnt B ) \/ ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 19 |
14 17 18
|
3imp3i2an |
|- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( ( P pCnt A ) <_ ( P pCnt B ) \/ ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 20 |
19
|
orcanai |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt B ) <_ ( P pCnt A ) ) |
| 21 |
|
3ancomb |
|- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) <-> ( P e. Prime /\ B e. ZZ /\ A e. ZZ ) ) |
| 22 |
|
pcgcd1 |
|- ( ( ( P e. Prime /\ B e. ZZ /\ A e. ZZ ) /\ ( P pCnt B ) <_ ( P pCnt A ) ) -> ( P pCnt ( B gcd A ) ) = ( P pCnt B ) ) |
| 23 |
21 22
|
sylanb |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt B ) <_ ( P pCnt A ) ) -> ( P pCnt ( B gcd A ) ) = ( P pCnt B ) ) |
| 24 |
20 23
|
syldan |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( B gcd A ) ) = ( P pCnt B ) ) |
| 25 |
10 24
|
eqtr4d |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt ( B gcd A ) ) ) |
| 26 |
8 25
|
eqtr4d |
|- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) ) |
| 27 |
4 26
|
pm2.61dan |
|- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( P pCnt ( A gcd B ) ) = if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) ) |