Description: A class is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. Cf. br1cossinidres , disjALTVinidres and eqvrel1cossinidres . (Contributed by Peter Mazsa, 31-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | petinidres | |- ( ( R i^i ( _I |` A ) ) Part A <-> ,~ ( R i^i ( _I |` A ) ) ErALTV A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | petinidres2 | |- ( ( Disj ( R i^i ( _I |` A ) ) /\ ( dom ( R i^i ( _I |` A ) ) /. ( R i^i ( _I |` A ) ) ) = A ) <-> ( EqvRel ,~ ( R i^i ( _I |` A ) ) /\ ( dom ,~ ( R i^i ( _I |` A ) ) /. ,~ ( R i^i ( _I |` A ) ) ) = A ) ) |
|
2 | dfpart2 | |- ( ( R i^i ( _I |` A ) ) Part A <-> ( Disj ( R i^i ( _I |` A ) ) /\ ( dom ( R i^i ( _I |` A ) ) /. ( R i^i ( _I |` A ) ) ) = A ) ) |
|
3 | dferALTV2 | |- ( ,~ ( R i^i ( _I |` A ) ) ErALTV A <-> ( EqvRel ,~ ( R i^i ( _I |` A ) ) /\ ( dom ,~ ( R i^i ( _I |` A ) ) /. ,~ ( R i^i ( _I |` A ) ) ) = A ) ) |
|
4 | 1 2 3 | 3bitr4i | |- ( ( R i^i ( _I |` A ) ) Part A <-> ,~ ( R i^i ( _I |` A ) ) ErALTV A ) |