| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opelxp |  |-  ( <. S , 0 >. e. ( _V X. NN0 ) <-> ( S e. _V /\ 0 e. NN0 ) ) | 
						
							| 2 |  | pfxval |  |-  ( ( S e. _V /\ 0 e. NN0 ) -> ( S prefix 0 ) = ( S substr <. 0 , 0 >. ) ) | 
						
							| 3 |  | swrd00 |  |-  ( S substr <. 0 , 0 >. ) = (/) | 
						
							| 4 | 2 3 | eqtrdi |  |-  ( ( S e. _V /\ 0 e. NN0 ) -> ( S prefix 0 ) = (/) ) | 
						
							| 5 | 1 4 | sylbi |  |-  ( <. S , 0 >. e. ( _V X. NN0 ) -> ( S prefix 0 ) = (/) ) | 
						
							| 6 |  | df-pfx |  |-  prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) ) | 
						
							| 7 |  | ovex |  |-  ( s substr <. 0 , l >. ) e. _V | 
						
							| 8 | 6 7 | dmmpo |  |-  dom prefix = ( _V X. NN0 ) | 
						
							| 9 | 5 8 | eleq2s |  |-  ( <. S , 0 >. e. dom prefix -> ( S prefix 0 ) = (/) ) | 
						
							| 10 |  | df-ov |  |-  ( S prefix 0 ) = ( prefix ` <. S , 0 >. ) | 
						
							| 11 |  | ndmfv |  |-  ( -. <. S , 0 >. e. dom prefix -> ( prefix ` <. S , 0 >. ) = (/) ) | 
						
							| 12 | 10 11 | eqtrid |  |-  ( -. <. S , 0 >. e. dom prefix -> ( S prefix 0 ) = (/) ) | 
						
							| 13 | 9 12 | pm2.61i |  |-  ( S prefix 0 ) = (/) |