Metamath Proof Explorer


Theorem pfx00

Description: The zero length prefix is the empty set. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion pfx00 Sprefix0=

Proof

Step Hyp Ref Expression
1 opelxp S0V×0SV00
2 pfxval SV00Sprefix0=Ssubstr00
3 swrd00 Ssubstr00=
4 2 3 eqtrdi SV00Sprefix0=
5 1 4 sylbi S0V×0Sprefix0=
6 df-pfx prefix=sV,l0ssubstr0l
7 ovex ssubstr0lV
8 6 7 dmmpo domprefix=V×0
9 5 8 eleq2s S0domprefixSprefix0=
10 df-ov Sprefix0=prefixS0
11 ndmfv ¬S0domprefixprefixS0=
12 10 11 eqtrid ¬S0domprefixSprefix0=
13 9 12 pm2.61i Sprefix0=