| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgnbgreunbgr.g |
|- G = ( 5 gPetersenGr 2 ) |
| 2 |
|
pgnbgreunbgr.v |
|- V = ( Vtx ` G ) |
| 3 |
|
pgnbgreunbgr.e |
|- E = ( Edg ` G ) |
| 4 |
|
pgnbgreunbgr.n |
|- N = ( G NeighbVtx X ) |
| 5 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 6 |
|
pglem |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 7 |
5 6
|
pm3.2i |
|- ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 8 |
|
c0ex |
|- 0 e. _V |
| 9 |
|
ovex |
|- ( ( y - 1 ) mod 5 ) e. _V |
| 10 |
8 9
|
op1st |
|- ( 1st ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) = 0 |
| 11 |
|
simpr |
|- ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E ) -> { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E ) |
| 12 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 13 |
12 1 2 3
|
gpgvtxedg0 |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( 1st ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) = 0 /\ { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E ) -> ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) + 1 ) mod 5 ) >. \/ <. 1 , b >. = <. 1 , ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) >. \/ <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) - 1 ) mod 5 ) >. ) ) |
| 14 |
7 10 11 13
|
mp3an12i |
|- ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E ) -> ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) + 1 ) mod 5 ) >. \/ <. 1 , b >. = <. 1 , ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) >. \/ <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) - 1 ) mod 5 ) >. ) ) |
| 15 |
14
|
ex |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E -> ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) + 1 ) mod 5 ) >. \/ <. 1 , b >. = <. 1 , ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) >. \/ <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) - 1 ) mod 5 ) >. ) ) ) |
| 16 |
|
1ex |
|- 1 e. _V |
| 17 |
|
vex |
|- b e. _V |
| 18 |
16 17
|
opth |
|- ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) + 1 ) mod 5 ) >. <-> ( 1 = 0 /\ b = ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) + 1 ) mod 5 ) ) ) |
| 19 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 20 |
19
|
a1i |
|- ( { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E -> 1 =/= 0 ) |
| 21 |
20
|
necon2bi |
|- ( 1 = 0 -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) |
| 22 |
21
|
adantr |
|- ( ( 1 = 0 /\ b = ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) + 1 ) mod 5 ) ) -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) |
| 23 |
18 22
|
sylbi |
|- ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) + 1 ) mod 5 ) >. -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) |
| 24 |
23
|
a1i |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) + 1 ) mod 5 ) >. -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 25 |
16 17
|
opth |
|- ( <. 1 , b >. = <. 1 , ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) >. <-> ( 1 = 1 /\ b = ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) ) ) |
| 26 |
8 9
|
op2nd |
|- ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) = ( ( y - 1 ) mod 5 ) |
| 27 |
26
|
eqeq2i |
|- ( b = ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) <-> b = ( ( y - 1 ) mod 5 ) ) |
| 28 |
1 3
|
pgnioedg5 |
|- ( y e. ( 0 ..^ 5 ) -> -. { <. 1 , ( ( y - 1 ) mod 5 ) >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) |
| 29 |
28
|
adantl |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> -. { <. 1 , ( ( y - 1 ) mod 5 ) >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) |
| 30 |
|
opeq2 |
|- ( b = ( ( y - 1 ) mod 5 ) -> <. 1 , b >. = <. 1 , ( ( y - 1 ) mod 5 ) >. ) |
| 31 |
30
|
preq1d |
|- ( b = ( ( y - 1 ) mod 5 ) -> { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } = { <. 1 , ( ( y - 1 ) mod 5 ) >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } ) |
| 32 |
31
|
eleq1d |
|- ( b = ( ( y - 1 ) mod 5 ) -> ( { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E <-> { <. 1 , ( ( y - 1 ) mod 5 ) >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 33 |
32
|
notbid |
|- ( b = ( ( y - 1 ) mod 5 ) -> ( -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E <-> -. { <. 1 , ( ( y - 1 ) mod 5 ) >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 34 |
29 33
|
imbitrrid |
|- ( b = ( ( y - 1 ) mod 5 ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 35 |
27 34
|
sylbi |
|- ( b = ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 36 |
25 35
|
simplbiim |
|- ( <. 1 , b >. = <. 1 , ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 37 |
36
|
com12 |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( <. 1 , b >. = <. 1 , ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) >. -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 38 |
16 17
|
opth |
|- ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) - 1 ) mod 5 ) >. <-> ( 1 = 0 /\ b = ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) - 1 ) mod 5 ) ) ) |
| 39 |
21
|
adantr |
|- ( ( 1 = 0 /\ b = ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) - 1 ) mod 5 ) ) -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) |
| 40 |
38 39
|
sylbi |
|- ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) - 1 ) mod 5 ) >. -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) |
| 41 |
40
|
a1i |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) - 1 ) mod 5 ) >. -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 42 |
24 37 41
|
3jaod |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) + 1 ) mod 5 ) >. \/ <. 1 , b >. = <. 1 , ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) >. \/ <. 1 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , ( ( y - 1 ) mod 5 ) >. ) - 1 ) mod 5 ) >. ) -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 43 |
15 42
|
syld |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 44 |
43
|
adantl |
|- ( ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 45 |
|
preq1 |
|- ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. -> { K , <. 1 , b >. } = { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } ) |
| 46 |
45
|
eleq1d |
|- ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( { K , <. 1 , b >. } e. E <-> { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E ) ) |
| 47 |
46
|
adantl |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( { K , <. 1 , b >. } e. E <-> { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E ) ) |
| 48 |
|
preq2 |
|- ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. -> { <. 1 , b >. , L } = { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } ) |
| 49 |
48
|
eleq1d |
|- ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( { <. 1 , b >. , L } e. E <-> { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 50 |
49
|
notbid |
|- ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( -. { <. 1 , b >. , L } e. E <-> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 51 |
50
|
adantr |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( -. { <. 1 , b >. , L } e. E <-> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 52 |
47 51
|
imbi12d |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( { K , <. 1 , b >. } e. E -> -. { <. 1 , b >. , L } e. E ) <-> ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) ) |
| 53 |
52
|
adantr |
|- ( ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 1 , b >. } e. E -> -. { <. 1 , b >. , L } e. E ) <-> ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 1 , b >. } e. E -> -. { <. 1 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) ) |
| 54 |
44 53
|
mpbird |
|- ( ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( { K , <. 1 , b >. } e. E -> -. { <. 1 , b >. , L } e. E ) ) |
| 55 |
54
|
imp |
|- ( ( ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) /\ { K , <. 1 , b >. } e. E ) -> -. { <. 1 , b >. , L } e. E ) |