| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgnioedg1.g |
|- G = ( 5 gPetersenGr 2 ) |
| 2 |
|
pgnioedg1.e |
|- E = ( Edg ` G ) |
| 3 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 4 |
|
pglem |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 5 |
3 4
|
pm3.2i |
|- ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 6 |
|
1ex |
|- 1 e. _V |
| 7 |
|
ovex |
|- ( ( y + 2 ) mod 5 ) e. _V |
| 8 |
6 7
|
op1st |
|- ( 1st ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) = 1 |
| 9 |
|
simpr |
|- ( ( y e. ( 0 ..^ 5 ) /\ { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) -> { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) |
| 10 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 11 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 12 |
10 1 11 2
|
gpgvtxedg1 |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( 1st ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) = 1 /\ { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) -> ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) + 2 ) mod 5 ) >. \/ <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 0 , ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) >. \/ <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) - 2 ) mod 5 ) >. ) ) |
| 13 |
5 8 9 12
|
mp3an12i |
|- ( ( y e. ( 0 ..^ 5 ) /\ { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) -> ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) + 2 ) mod 5 ) >. \/ <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 0 , ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) >. \/ <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) - 2 ) mod 5 ) >. ) ) |
| 14 |
13
|
ex |
|- ( y e. ( 0 ..^ 5 ) -> ( { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E -> ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) + 2 ) mod 5 ) >. \/ <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 0 , ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) >. \/ <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) - 2 ) mod 5 ) >. ) ) ) |
| 15 |
|
c0ex |
|- 0 e. _V |
| 16 |
|
ovex |
|- ( ( y - 1 ) mod 5 ) e. _V |
| 17 |
15 16
|
opth |
|- ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) + 2 ) mod 5 ) >. <-> ( 0 = 1 /\ ( ( y - 1 ) mod 5 ) = ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) + 2 ) mod 5 ) ) ) |
| 18 |
|
0ne1 |
|- 0 =/= 1 |
| 19 |
|
eqneqall |
|- ( 0 = 1 -> ( 0 =/= 1 -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 20 |
18 19
|
mpi |
|- ( 0 = 1 -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) |
| 21 |
20
|
adantr |
|- ( ( 0 = 1 /\ ( ( y - 1 ) mod 5 ) = ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) + 2 ) mod 5 ) ) -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) |
| 22 |
17 21
|
sylbi |
|- ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) + 2 ) mod 5 ) >. -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) |
| 23 |
22
|
a1i |
|- ( y e. ( 0 ..^ 5 ) -> ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) + 2 ) mod 5 ) >. -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 24 |
15 16
|
opth |
|- ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 0 , ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) >. <-> ( 0 = 0 /\ ( ( y - 1 ) mod 5 ) = ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) ) ) |
| 25 |
6 7
|
op2nd |
|- ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) = ( ( y + 2 ) mod 5 ) |
| 26 |
25
|
eqeq2i |
|- ( ( ( y - 1 ) mod 5 ) = ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) <-> ( ( y - 1 ) mod 5 ) = ( ( y + 2 ) mod 5 ) ) |
| 27 |
|
5nn |
|- 5 e. NN |
| 28 |
27
|
nnzi |
|- 5 e. ZZ |
| 29 |
|
uzid |
|- ( 5 e. ZZ -> 5 e. ( ZZ>= ` 5 ) ) |
| 30 |
28 29
|
ax-mp |
|- 5 e. ( ZZ>= ` 5 ) |
| 31 |
|
eqid |
|- ( 0 ..^ 5 ) = ( 0 ..^ 5 ) |
| 32 |
31
|
modm1nep2 |
|- ( ( 5 e. ( ZZ>= ` 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( y - 1 ) mod 5 ) =/= ( ( y + 2 ) mod 5 ) ) |
| 33 |
30 32
|
mpan |
|- ( y e. ( 0 ..^ 5 ) -> ( ( y - 1 ) mod 5 ) =/= ( ( y + 2 ) mod 5 ) ) |
| 34 |
|
eqneqall |
|- ( ( ( y - 1 ) mod 5 ) = ( ( y + 2 ) mod 5 ) -> ( ( ( y - 1 ) mod 5 ) =/= ( ( y + 2 ) mod 5 ) -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 35 |
33 34
|
syl5 |
|- ( ( ( y - 1 ) mod 5 ) = ( ( y + 2 ) mod 5 ) -> ( y e. ( 0 ..^ 5 ) -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 36 |
26 35
|
sylbi |
|- ( ( ( y - 1 ) mod 5 ) = ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) -> ( y e. ( 0 ..^ 5 ) -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 37 |
24 36
|
simplbiim |
|- ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 0 , ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) >. -> ( y e. ( 0 ..^ 5 ) -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 38 |
37
|
com12 |
|- ( y e. ( 0 ..^ 5 ) -> ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 0 , ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) >. -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 39 |
15 16
|
opth |
|- ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) - 2 ) mod 5 ) >. <-> ( 0 = 1 /\ ( ( y - 1 ) mod 5 ) = ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) - 2 ) mod 5 ) ) ) |
| 40 |
20
|
adantr |
|- ( ( 0 = 1 /\ ( ( y - 1 ) mod 5 ) = ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) - 2 ) mod 5 ) ) -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) |
| 41 |
39 40
|
sylbi |
|- ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) - 2 ) mod 5 ) >. -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) |
| 42 |
41
|
a1i |
|- ( y e. ( 0 ..^ 5 ) -> ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) - 2 ) mod 5 ) >. -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 43 |
23 38 42
|
3jaod |
|- ( y e. ( 0 ..^ 5 ) -> ( ( <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) + 2 ) mod 5 ) >. \/ <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 0 , ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) >. \/ <. 0 , ( ( y - 1 ) mod 5 ) >. = <. 1 , ( ( ( 2nd ` <. 1 , ( ( y + 2 ) mod 5 ) >. ) - 2 ) mod 5 ) >. ) -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 44 |
14 43
|
syld |
|- ( y e. ( 0 ..^ 5 ) -> ( { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 45 |
44
|
pm2.01d |
|- ( y e. ( 0 ..^ 5 ) -> -. { <. 1 , ( ( y + 2 ) mod 5 ) >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) |