| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfi |  |-  ( 1 ... ( N - 1 ) ) e. Fin | 
						
							| 2 |  | phibndlem |  |-  ( N e. ( ZZ>= ` 2 ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) ) | 
						
							| 3 |  | ssdomg |  |-  ( ( 1 ... ( N - 1 ) ) e. Fin -> ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 4 | 1 2 3 | mpsyl |  |-  ( N e. ( ZZ>= ` 2 ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) | 
						
							| 5 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 6 |  | ssrab2 |  |-  { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) | 
						
							| 7 |  | ssfi |  |-  ( ( ( 1 ... N ) e. Fin /\ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin ) | 
						
							| 8 | 5 6 7 | mp2an |  |-  { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin | 
						
							| 9 |  | hashdom |  |-  ( ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin /\ ( 1 ... ( N - 1 ) ) e. Fin ) -> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... ( N - 1 ) ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 10 | 8 1 9 | mp2an |  |-  ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... ( N - 1 ) ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) | 
						
							| 11 | 4 10 | sylibr |  |-  ( N e. ( ZZ>= ` 2 ) -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 12 |  | eluz2nn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN ) | 
						
							| 13 |  | phival |  |-  ( N e. NN -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) | 
						
							| 15 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 16 |  | hashfz1 |  |-  ( ( N - 1 ) e. NN0 -> ( # ` ( 1 ... ( N - 1 ) ) ) = ( N - 1 ) ) | 
						
							| 17 | 12 15 16 | 3syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( # ` ( 1 ... ( N - 1 ) ) ) = ( N - 1 ) ) | 
						
							| 18 | 17 | eqcomd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) = ( # ` ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 19 | 11 14 18 | 3brtr4d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( phi ` N ) <_ ( N - 1 ) ) |