| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfi | ⊢ ( 1 ... ( 𝑁  −  1 ) )  ∈  Fin | 
						
							| 2 |  | phibndlem | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ⊆  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 3 |  | ssdomg | ⊢ ( ( 1 ... ( 𝑁  −  1 ) )  ∈  Fin  →  ( { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ⊆  ( 1 ... ( 𝑁  −  1 ) )  →  { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ≼  ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 4 | 1 2 3 | mpsyl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ≼  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 5 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ⊆  ( 1 ... 𝑁 ) | 
						
							| 7 |  | ssfi | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ⊆  ( 1 ... 𝑁 ) )  →  { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ∈  Fin ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ∈  Fin | 
						
							| 9 |  | hashdom | ⊢ ( ( { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ∈  Fin  ∧  ( 1 ... ( 𝑁  −  1 ) )  ∈  Fin )  →  ( ( ♯ ‘ { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 } )  ≤  ( ♯ ‘ ( 1 ... ( 𝑁  −  1 ) ) )  ↔  { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ≼  ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 10 | 8 1 9 | mp2an | ⊢ ( ( ♯ ‘ { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 } )  ≤  ( ♯ ‘ ( 1 ... ( 𝑁  −  1 ) ) )  ↔  { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 }  ≼  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 11 | 4 10 | sylibr | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ♯ ‘ { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 } )  ≤  ( ♯ ‘ ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 12 |  | eluz2nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ ) | 
						
							| 13 |  | phival | ⊢ ( 𝑁  ∈  ℕ  →  ( ϕ ‘ 𝑁 )  =  ( ♯ ‘ { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 } ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ϕ ‘ 𝑁 )  =  ( ♯ ‘ { 𝑥  ∈  ( 1 ... 𝑁 )  ∣  ( 𝑥  gcd  𝑁 )  =  1 } ) ) | 
						
							| 15 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 16 |  | hashfz1 | ⊢ ( ( 𝑁  −  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( 𝑁  −  1 ) ) )  =  ( 𝑁  −  1 ) ) | 
						
							| 17 | 12 15 16 | 3syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ♯ ‘ ( 1 ... ( 𝑁  −  1 ) ) )  =  ( 𝑁  −  1 ) ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  −  1 )  =  ( ♯ ‘ ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 19 | 11 14 18 | 3brtr4d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ϕ ‘ 𝑁 )  ≤  ( 𝑁  −  1 ) ) |