| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phpeqdOLD.1 |
|- ( ph -> A e. Fin ) |
| 2 |
|
phpeqdOLD.2 |
|- ( ph -> B C_ A ) |
| 3 |
|
phpeqdOLD.3 |
|- ( ph -> A ~~ B ) |
| 4 |
2
|
adantr |
|- ( ( ph /\ -. A = B ) -> B C_ A ) |
| 5 |
|
simpr |
|- ( ( ph /\ -. A = B ) -> -. A = B ) |
| 6 |
5
|
neqcomd |
|- ( ( ph /\ -. A = B ) -> -. B = A ) |
| 7 |
|
dfpss2 |
|- ( B C. A <-> ( B C_ A /\ -. B = A ) ) |
| 8 |
4 6 7
|
sylanbrc |
|- ( ( ph /\ -. A = B ) -> B C. A ) |
| 9 |
|
php3 |
|- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |
| 10 |
1 8 9
|
syl2an2r |
|- ( ( ph /\ -. A = B ) -> B ~< A ) |
| 11 |
|
sdomnen |
|- ( B ~< A -> -. B ~~ A ) |
| 12 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
| 13 |
11 12
|
nsyl |
|- ( B ~< A -> -. A ~~ B ) |
| 14 |
10 13
|
syl |
|- ( ( ph /\ -. A = B ) -> -. A ~~ B ) |
| 15 |
14
|
ex |
|- ( ph -> ( -. A = B -> -. A ~~ B ) ) |
| 16 |
3 15
|
mt4d |
|- ( ph -> A = B ) |