| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phpeqdOLD.1 |  |-  ( ph -> A e. Fin ) | 
						
							| 2 |  | phpeqdOLD.2 |  |-  ( ph -> B C_ A ) | 
						
							| 3 |  | phpeqdOLD.3 |  |-  ( ph -> A ~~ B ) | 
						
							| 4 | 2 | adantr |  |-  ( ( ph /\ -. A = B ) -> B C_ A ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ -. A = B ) -> -. A = B ) | 
						
							| 6 | 5 | neqcomd |  |-  ( ( ph /\ -. A = B ) -> -. B = A ) | 
						
							| 7 |  | dfpss2 |  |-  ( B C. A <-> ( B C_ A /\ -. B = A ) ) | 
						
							| 8 | 4 6 7 | sylanbrc |  |-  ( ( ph /\ -. A = B ) -> B C. A ) | 
						
							| 9 |  | php3 |  |-  ( ( A e. Fin /\ B C. A ) -> B ~< A ) | 
						
							| 10 | 1 8 9 | syl2an2r |  |-  ( ( ph /\ -. A = B ) -> B ~< A ) | 
						
							| 11 |  | sdomnen |  |-  ( B ~< A -> -. B ~~ A ) | 
						
							| 12 |  | ensym |  |-  ( A ~~ B -> B ~~ A ) | 
						
							| 13 | 11 12 | nsyl |  |-  ( B ~< A -> -. A ~~ B ) | 
						
							| 14 | 10 13 | syl |  |-  ( ( ph /\ -. A = B ) -> -. A ~~ B ) | 
						
							| 15 | 14 | ex |  |-  ( ph -> ( -. A = B -> -. A ~~ B ) ) | 
						
							| 16 | 3 15 | mt4d |  |-  ( ph -> A = B ) |