| Step | Hyp | Ref | Expression | 
						
							| 1 |  | php2 |  |-  ( ( A e. _om /\ B C. A ) -> B ~< A ) | 
						
							| 2 | 1 | ex |  |-  ( A e. _om -> ( B C. A -> B ~< A ) ) | 
						
							| 3 |  | domnsym |  |-  ( A ~<_ B -> -. B ~< A ) | 
						
							| 4 | 2 3 | nsyli |  |-  ( A e. _om -> ( A ~<_ B -> -. B C. A ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> -. B C. A ) ) | 
						
							| 6 |  | nnord |  |-  ( A e. _om -> Ord A ) | 
						
							| 7 |  | eloni |  |-  ( B e. On -> Ord B ) | 
						
							| 8 |  | ordtri1 |  |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) | 
						
							| 9 |  | ordelpss |  |-  ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) ) | 
						
							| 10 | 9 | ancoms |  |-  ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) ) | 
						
							| 11 | 10 | notbid |  |-  ( ( Ord A /\ Ord B ) -> ( -. B e. A <-> -. B C. A ) ) | 
						
							| 12 | 8 11 | bitrd |  |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B C. A ) ) | 
						
							| 13 | 6 7 12 | syl2an |  |-  ( ( A e. _om /\ B e. On ) -> ( A C_ B <-> -. B C. A ) ) | 
						
							| 14 | 5 13 | sylibrd |  |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> A C_ B ) ) | 
						
							| 15 |  | ssdomg |  |-  ( B e. On -> ( A C_ B -> A ~<_ B ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( A e. _om /\ B e. On ) -> ( A C_ B -> A ~<_ B ) ) | 
						
							| 17 | 14 16 | impbid |  |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B <-> A C_ B ) ) |