| Step | Hyp | Ref | Expression | 
						
							| 1 |  | php2 | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  𝐵  ≺  𝐴 ) | 
						
							| 2 | 1 | ex | ⊢ ( 𝐴  ∈  ω  →  ( 𝐵  ⊊  𝐴  →  𝐵  ≺  𝐴 ) ) | 
						
							| 3 |  | domnsym | ⊢ ( 𝐴  ≼  𝐵  →  ¬  𝐵  ≺  𝐴 ) | 
						
							| 4 | 2 3 | nsyli | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ≼  𝐵  →  ¬  𝐵  ⊊  𝐴 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ≼  𝐵  →  ¬  𝐵  ⊊  𝐴 ) ) | 
						
							| 6 |  | nnord | ⊢ ( 𝐴  ∈  ω  →  Ord  𝐴 ) | 
						
							| 7 |  | eloni | ⊢ ( 𝐵  ∈  On  →  Ord  𝐵 ) | 
						
							| 8 |  | ordtri1 | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ⊆  𝐵  ↔  ¬  𝐵  ∈  𝐴 ) ) | 
						
							| 9 |  | ordelpss | ⊢ ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( 𝐵  ∈  𝐴  ↔  𝐵  ⊊  𝐴 ) ) | 
						
							| 10 | 9 | ancoms | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐵  ∈  𝐴  ↔  𝐵  ⊊  𝐴 ) ) | 
						
							| 11 | 10 | notbid | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( ¬  𝐵  ∈  𝐴  ↔  ¬  𝐵  ⊊  𝐴 ) ) | 
						
							| 12 | 8 11 | bitrd | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ⊆  𝐵  ↔  ¬  𝐵  ⊊  𝐴 ) ) | 
						
							| 13 | 6 7 12 | syl2an | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  ¬  𝐵  ⊊  𝐴 ) ) | 
						
							| 14 | 5 13 | sylibrd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ≼  𝐵  →  𝐴  ⊆  𝐵 ) ) | 
						
							| 15 |  | ssdomg | ⊢ ( 𝐵  ∈  On  →  ( 𝐴  ⊆  𝐵  →  𝐴  ≼  𝐵 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  →  𝐴  ≼  𝐵 ) ) | 
						
							| 17 | 14 16 | impbid | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ≼  𝐵  ↔  𝐴  ⊆  𝐵 ) ) |