| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phpeqdOLD.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | phpeqdOLD.2 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
						
							| 3 |  | phpeqdOLD.3 | ⊢ ( 𝜑  →  𝐴  ≈  𝐵 ) | 
						
							| 4 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ⊆  𝐴 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  =  𝐵 ) | 
						
							| 6 | 5 | neqcomd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐵  =  𝐴 ) | 
						
							| 7 |  | dfpss2 | ⊢ ( 𝐵  ⊊  𝐴  ↔  ( 𝐵  ⊆  𝐴  ∧  ¬  𝐵  =  𝐴 ) ) | 
						
							| 8 | 4 6 7 | sylanbrc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ⊊  𝐴 ) | 
						
							| 9 |  | php3 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊊  𝐴 )  →  𝐵  ≺  𝐴 ) | 
						
							| 10 | 1 8 9 | syl2an2r | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ≺  𝐴 ) | 
						
							| 11 |  | sdomnen | ⊢ ( 𝐵  ≺  𝐴  →  ¬  𝐵  ≈  𝐴 ) | 
						
							| 12 |  | ensym | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ≈  𝐴 ) | 
						
							| 13 | 11 12 | nsyl | ⊢ ( 𝐵  ≺  𝐴  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 14 | 10 13 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 15 | 14 | ex | ⊢ ( 𝜑  →  ( ¬  𝐴  =  𝐵  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 16 | 3 15 | mt4d | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |