Metamath Proof Explorer


Theorem phpeqdOLD

Description: Obsolete version of phpeqd as of 28-Nov-2024. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses phpeqdOLD.1 φ A Fin
phpeqdOLD.2 φ B A
phpeqdOLD.3 φ A B
Assertion phpeqdOLD φ A = B

Proof

Step Hyp Ref Expression
1 phpeqdOLD.1 φ A Fin
2 phpeqdOLD.2 φ B A
3 phpeqdOLD.3 φ A B
4 2 adantr φ ¬ A = B B A
5 simpr φ ¬ A = B ¬ A = B
6 5 neqcomd φ ¬ A = B ¬ B = A
7 dfpss2 B A B A ¬ B = A
8 4 6 7 sylanbrc φ ¬ A = B B A
9 php3 A Fin B A B A
10 1 8 9 syl2an2r φ ¬ A = B B A
11 sdomnen B A ¬ B A
12 ensym A B B A
13 11 12 nsyl B A ¬ A B
14 10 13 syl φ ¬ A = B ¬ A B
15 14 ex φ ¬ A = B ¬ A B
16 3 15 mt4d φ A = B