Step |
Hyp |
Ref |
Expression |
1 |
|
pmapglb.b |
|- B = ( Base ` K ) |
2 |
|
pmapglb.g |
|- G = ( glb ` K ) |
3 |
|
pmapglb.m |
|- M = ( pmap ` K ) |
4 |
|
df-rex |
|- ( E. x e. S y = x <-> E. x ( x e. S /\ y = x ) ) |
5 |
|
equcom |
|- ( y = x <-> x = y ) |
6 |
5
|
anbi1ci |
|- ( ( x e. S /\ y = x ) <-> ( x = y /\ x e. S ) ) |
7 |
6
|
exbii |
|- ( E. x ( x e. S /\ y = x ) <-> E. x ( x = y /\ x e. S ) ) |
8 |
|
eleq1w |
|- ( x = y -> ( x e. S <-> y e. S ) ) |
9 |
8
|
equsexvw |
|- ( E. x ( x = y /\ x e. S ) <-> y e. S ) |
10 |
4 7 9
|
3bitri |
|- ( E. x e. S y = x <-> y e. S ) |
11 |
10
|
abbii |
|- { y | E. x e. S y = x } = { y | y e. S } |
12 |
|
abid2 |
|- { y | y e. S } = S |
13 |
11 12
|
eqtr2i |
|- S = { y | E. x e. S y = x } |
14 |
13
|
fveq2i |
|- ( G ` S ) = ( G ` { y | E. x e. S y = x } ) |
15 |
14
|
fveq2i |
|- ( M ` ( G ` S ) ) = ( M ` ( G ` { y | E. x e. S y = x } ) ) |
16 |
|
dfss3 |
|- ( S C_ B <-> A. x e. S x e. B ) |
17 |
1 2 3
|
pmapglbx |
|- ( ( K e. HL /\ A. x e. S x e. B /\ S =/= (/) ) -> ( M ` ( G ` { y | E. x e. S y = x } ) ) = |^|_ x e. S ( M ` x ) ) |
18 |
16 17
|
syl3an2b |
|- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( M ` ( G ` { y | E. x e. S y = x } ) ) = |^|_ x e. S ( M ` x ) ) |
19 |
15 18
|
eqtrid |
|- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( M ` ( G ` S ) ) = |^|_ x e. S ( M ` x ) ) |