Metamath Proof Explorer


Theorem pmapglb

Description: The projective map of the GLB of a set of lattice elements S . Variant of Theorem 15.5.2 of MaedaMaeda p. 62. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypotheses pmapglb.b B=BaseK
pmapglb.g G=glbK
pmapglb.m M=pmapK
Assertion pmapglb KHLSBSMGS=xSMx

Proof

Step Hyp Ref Expression
1 pmapglb.b B=BaseK
2 pmapglb.g G=glbK
3 pmapglb.m M=pmapK
4 df-rex xSy=xxxSy=x
5 equcom y=xx=y
6 5 anbi1ci xSy=xx=yxS
7 6 exbii xxSy=xxx=yxS
8 eleq1w x=yxSyS
9 8 equsexvw xx=yxSyS
10 4 7 9 3bitri xSy=xyS
11 10 abbii y|xSy=x=y|yS
12 abid2 y|yS=S
13 11 12 eqtr2i S=y|xSy=x
14 13 fveq2i GS=Gy|xSy=x
15 14 fveq2i MGS=MGy|xSy=x
16 dfss3 SBxSxB
17 1 2 3 pmapglbx KHLxSxBSMGy|xSy=x=xSMx
18 16 17 syl3an2b KHLSBSMGy|xSy=x=xSMx
19 15 18 eqtrid KHLSBSMGS=xSMx