Step |
Hyp |
Ref |
Expression |
1 |
|
pmapglb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pmapglb.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
3 |
|
pmapglb.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
4 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥 ) ) |
5 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
6 |
5
|
anbi1ci |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥 ) ↔ ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆 ) ) |
7 |
6
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆 ) ) |
8 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆 ) ) |
9 |
8
|
equsexvw |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆 ) ↔ 𝑦 ∈ 𝑆 ) |
10 |
4 7 9
|
3bitri |
⊢ ( ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ 𝑦 ∈ 𝑆 ) |
11 |
10
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } = { 𝑦 ∣ 𝑦 ∈ 𝑆 } |
12 |
|
abid2 |
⊢ { 𝑦 ∣ 𝑦 ∈ 𝑆 } = 𝑆 |
13 |
11 12
|
eqtr2i |
⊢ 𝑆 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } |
14 |
13
|
fveq2i |
⊢ ( 𝐺 ‘ 𝑆 ) = ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } ) |
15 |
14
|
fveq2i |
⊢ ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } ) ) |
16 |
|
dfss3 |
⊢ ( 𝑆 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝑆 𝑥 ∈ 𝐵 ) |
17 |
1 2 3
|
pmapglbx |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ∈ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
18 |
16 17
|
syl3an2b |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
19 |
15 18
|
eqtrid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |