Metamath Proof Explorer


Theorem pmapglb

Description: The projective map of the GLB of a set of lattice elements S . Variant of Theorem 15.5.2 of MaedaMaeda p. 62. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypotheses pmapglb.b 𝐵 = ( Base ‘ 𝐾 )
pmapglb.g 𝐺 = ( glb ‘ 𝐾 )
pmapglb.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion pmapglb ( ( 𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = 𝑥𝑆 ( 𝑀𝑥 ) )

Proof

Step Hyp Ref Expression
1 pmapglb.b 𝐵 = ( Base ‘ 𝐾 )
2 pmapglb.g 𝐺 = ( glb ‘ 𝐾 )
3 pmapglb.m 𝑀 = ( pmap ‘ 𝐾 )
4 df-rex ( ∃ 𝑥𝑆 𝑦 = 𝑥 ↔ ∃ 𝑥 ( 𝑥𝑆𝑦 = 𝑥 ) )
5 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
6 5 anbi1ci ( ( 𝑥𝑆𝑦 = 𝑥 ) ↔ ( 𝑥 = 𝑦𝑥𝑆 ) )
7 6 exbii ( ∃ 𝑥 ( 𝑥𝑆𝑦 = 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑦𝑥𝑆 ) )
8 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝑆𝑦𝑆 ) )
9 8 equsexvw ( ∃ 𝑥 ( 𝑥 = 𝑦𝑥𝑆 ) ↔ 𝑦𝑆 )
10 4 7 9 3bitri ( ∃ 𝑥𝑆 𝑦 = 𝑥𝑦𝑆 )
11 10 abbii { 𝑦 ∣ ∃ 𝑥𝑆 𝑦 = 𝑥 } = { 𝑦𝑦𝑆 }
12 abid2 { 𝑦𝑦𝑆 } = 𝑆
13 11 12 eqtr2i 𝑆 = { 𝑦 ∣ ∃ 𝑥𝑆 𝑦 = 𝑥 }
14 13 fveq2i ( 𝐺𝑆 ) = ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥𝑆 𝑦 = 𝑥 } )
15 14 fveq2i ( 𝑀 ‘ ( 𝐺𝑆 ) ) = ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥𝑆 𝑦 = 𝑥 } ) )
16 dfss3 ( 𝑆𝐵 ↔ ∀ 𝑥𝑆 𝑥𝐵 )
17 1 2 3 pmapglbx ( ( 𝐾 ∈ HL ∧ ∀ 𝑥𝑆 𝑥𝐵𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥𝑆 𝑦 = 𝑥 } ) ) = 𝑥𝑆 ( 𝑀𝑥 ) )
18 16 17 syl3an2b ( ( 𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥𝑆 𝑦 = 𝑥 } ) ) = 𝑥𝑆 ( 𝑀𝑥 ) )
19 15 18 eqtrid ( ( 𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = 𝑥𝑆 ( 𝑀𝑥 ) )