Metamath Proof Explorer


Theorem pmapglbx

Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb , where we read S as S ( i ) . Theorem 15.5.2 of MaedaMaeda p. 62. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypotheses pmapglb.b 𝐵 = ( Base ‘ 𝐾 )
pmapglb.g 𝐺 = ( glb ‘ 𝐾 )
pmapglb.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion pmapglbx ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = 𝑖𝐼 ( 𝑀𝑆 ) )

Proof

Step Hyp Ref Expression
1 pmapglb.b 𝐵 = ( Base ‘ 𝐾 )
2 pmapglb.g 𝐺 = ( glb ‘ 𝐾 )
3 pmapglb.m 𝑀 = ( pmap ‘ 𝐾 )
4 hlclat ( 𝐾 ∈ HL → 𝐾 ∈ CLat )
5 4 ad2antrr ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ CLat )
6 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
7 1 6 atbase ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝𝐵 )
8 7 adantl ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑝𝐵 )
9 r19.29 ( ( ∀ 𝑖𝐼 𝑆𝐵 ∧ ∃ 𝑖𝐼 𝑦 = 𝑆 ) → ∃ 𝑖𝐼 ( 𝑆𝐵𝑦 = 𝑆 ) )
10 eleq1a ( 𝑆𝐵 → ( 𝑦 = 𝑆𝑦𝐵 ) )
11 10 imp ( ( 𝑆𝐵𝑦 = 𝑆 ) → 𝑦𝐵 )
12 11 rexlimivw ( ∃ 𝑖𝐼 ( 𝑆𝐵𝑦 = 𝑆 ) → 𝑦𝐵 )
13 9 12 syl ( ( ∀ 𝑖𝐼 𝑆𝐵 ∧ ∃ 𝑖𝐼 𝑦 = 𝑆 ) → 𝑦𝐵 )
14 13 ex ( ∀ 𝑖𝐼 𝑆𝐵 → ( ∃ 𝑖𝐼 𝑦 = 𝑆𝑦𝐵 ) )
15 14 ad2antlr ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ∃ 𝑖𝐼 𝑦 = 𝑆𝑦𝐵 ) )
16 15 abssdv ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ⊆ 𝐵 )
17 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
18 1 17 2 clatleglb ( ( 𝐾 ∈ CLat ∧ 𝑝𝐵 ∧ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ) )
19 5 8 16 18 syl3anc ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ) )
20 vex 𝑧 ∈ V
21 eqeq1 ( 𝑦 = 𝑧 → ( 𝑦 = 𝑆𝑧 = 𝑆 ) )
22 21 rexbidv ( 𝑦 = 𝑧 → ( ∃ 𝑖𝐼 𝑦 = 𝑆 ↔ ∃ 𝑖𝐼 𝑧 = 𝑆 ) )
23 20 22 elab ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ↔ ∃ 𝑖𝐼 𝑧 = 𝑆 )
24 23 imbi1i ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∃ 𝑖𝐼 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) )
25 r19.23v ( ∀ 𝑖𝐼 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∃ 𝑖𝐼 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) )
26 24 25 bitr4i ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑖𝐼 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) )
27 26 albii ( ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧𝑖𝐼 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) )
28 df-ral ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) )
29 ralcom4 ( ∀ 𝑖𝐼𝑧 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧𝑖𝐼 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) )
30 27 28 29 3bitr4i ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑖𝐼𝑧 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) )
31 nfv 𝑧 𝑝 ( le ‘ 𝐾 ) 𝑆
32 breq2 ( 𝑧 = 𝑆 → ( 𝑝 ( le ‘ 𝐾 ) 𝑧𝑝 ( le ‘ 𝐾 ) 𝑆 ) )
33 31 32 ceqsalg ( 𝑆𝐵 → ( ∀ 𝑧 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) )
34 33 ralimi ( ∀ 𝑖𝐼 𝑆𝐵 → ∀ 𝑖𝐼 ( ∀ 𝑧 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) )
35 ralbi ( ∀ 𝑖𝐼 ( ∀ 𝑧 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) → ( ∀ 𝑖𝐼𝑧 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑖𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) )
36 34 35 syl ( ∀ 𝑖𝐼 𝑆𝐵 → ( ∀ 𝑖𝐼𝑧 ( 𝑧 = 𝑆𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑖𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) )
37 30 36 syl5bb ( ∀ 𝑖𝐼 𝑆𝐵 → ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑖𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) )
38 37 ad2antlr ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑖𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) )
39 19 38 bitrd ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ↔ ∀ 𝑖𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) )
40 39 rabbidva ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } )
41 40 3adant3 ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } )
42 simp1 ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → 𝐾 ∈ HL )
43 14 abssdv ( ∀ 𝑖𝐼 𝑆𝐵 → { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ⊆ 𝐵 )
44 1 2 clatglbcl ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 )
45 4 43 44 syl2an ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 )
46 45 3adant3 ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 )
47 1 17 6 3 pmapval ( ( 𝐾 ∈ HL ∧ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) } )
48 42 46 47 syl2anc ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) } )
49 iinrab ( 𝐼 ≠ ∅ → 𝑖𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } )
50 49 3ad2ant3 ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → 𝑖𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } )
51 41 48 50 3eqtr4d ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = 𝑖𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } )
52 nfv 𝑖 𝐾 ∈ HL
53 nfra1 𝑖𝑖𝐼 𝑆𝐵
54 nfv 𝑖 𝐼 ≠ ∅
55 52 53 54 nf3an 𝑖 ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ )
56 simpl1 ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) ∧ 𝑖𝐼 ) → 𝐾 ∈ HL )
57 rspa ( ( ∀ 𝑖𝐼 𝑆𝐵𝑖𝐼 ) → 𝑆𝐵 )
58 57 3ad2antl2 ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) ∧ 𝑖𝐼 ) → 𝑆𝐵 )
59 1 17 6 3 pmapval ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑀𝑆 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } )
60 56 58 59 syl2anc ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) ∧ 𝑖𝐼 ) → ( 𝑀𝑆 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } )
61 55 60 iineq2d ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → 𝑖𝐼 ( 𝑀𝑆 ) = 𝑖𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } )
62 51 61 eqtr4d ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = 𝑖𝐼 ( 𝑀𝑆 ) )