Metamath Proof Explorer


Theorem pmapglbx

Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb , where we read S as S ( i ) . Theorem 15.5.2 of MaedaMaeda p. 62. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypotheses pmapglb.b B=BaseK
pmapglb.g G=glbK
pmapglb.m M=pmapK
Assertion pmapglbx KHLiISBIMGy|iIy=S=iIMS

Proof

Step Hyp Ref Expression
1 pmapglb.b B=BaseK
2 pmapglb.g G=glbK
3 pmapglb.m M=pmapK
4 hlclat KHLKCLat
5 4 ad2antrr KHLiISBpAtomsKKCLat
6 eqid AtomsK=AtomsK
7 1 6 atbase pAtomsKpB
8 7 adantl KHLiISBpAtomsKpB
9 r19.29 iISBiIy=SiISBy=S
10 eleq1a SBy=SyB
11 10 imp SBy=SyB
12 11 rexlimivw iISBy=SyB
13 9 12 syl iISBiIy=SyB
14 13 ex iISBiIy=SyB
15 14 ad2antlr KHLiISBpAtomsKiIy=SyB
16 15 abssdv KHLiISBpAtomsKy|iIy=SB
17 eqid K=K
18 1 17 2 clatleglb KCLatpBy|iIy=SBpKGy|iIy=Szy|iIy=SpKz
19 5 8 16 18 syl3anc KHLiISBpAtomsKpKGy|iIy=Szy|iIy=SpKz
20 vex zV
21 eqeq1 y=zy=Sz=S
22 21 rexbidv y=ziIy=SiIz=S
23 20 22 elab zy|iIy=SiIz=S
24 23 imbi1i zy|iIy=SpKziIz=SpKz
25 r19.23v iIz=SpKziIz=SpKz
26 24 25 bitr4i zy|iIy=SpKziIz=SpKz
27 26 albii zzy|iIy=SpKzziIz=SpKz
28 df-ral zy|iIy=SpKzzzy|iIy=SpKz
29 ralcom4 iIzz=SpKzziIz=SpKz
30 27 28 29 3bitr4i zy|iIy=SpKziIzz=SpKz
31 nfv zpKS
32 breq2 z=SpKzpKS
33 31 32 ceqsalg SBzz=SpKzpKS
34 33 ralimi iISBiIzz=SpKzpKS
35 ralbi iIzz=SpKzpKSiIzz=SpKziIpKS
36 34 35 syl iISBiIzz=SpKziIpKS
37 30 36 bitrid iISBzy|iIy=SpKziIpKS
38 37 ad2antlr KHLiISBpAtomsKzy|iIy=SpKziIpKS
39 19 38 bitrd KHLiISBpAtomsKpKGy|iIy=SiIpKS
40 39 rabbidva KHLiISBpAtomsK|pKGy|iIy=S=pAtomsK|iIpKS
41 40 3adant3 KHLiISBIpAtomsK|pKGy|iIy=S=pAtomsK|iIpKS
42 simp1 KHLiISBIKHL
43 14 abssdv iISBy|iIy=SB
44 1 2 clatglbcl KCLaty|iIy=SBGy|iIy=SB
45 4 43 44 syl2an KHLiISBGy|iIy=SB
46 45 3adant3 KHLiISBIGy|iIy=SB
47 1 17 6 3 pmapval KHLGy|iIy=SBMGy|iIy=S=pAtomsK|pKGy|iIy=S
48 42 46 47 syl2anc KHLiISBIMGy|iIy=S=pAtomsK|pKGy|iIy=S
49 iinrab IiIpAtomsK|pKS=pAtomsK|iIpKS
50 49 3ad2ant3 KHLiISBIiIpAtomsK|pKS=pAtomsK|iIpKS
51 41 48 50 3eqtr4d KHLiISBIMGy|iIy=S=iIpAtomsK|pKS
52 nfv iKHL
53 nfra1 iiISB
54 nfv iI
55 52 53 54 nf3an iKHLiISBI
56 simpl1 KHLiISBIiIKHL
57 rspa iISBiISB
58 57 3ad2antl2 KHLiISBIiISB
59 1 17 6 3 pmapval KHLSBMS=pAtomsK|pKS
60 56 58 59 syl2anc KHLiISBIiIMS=pAtomsK|pKS
61 55 60 iineq2d KHLiISBIiIMS=iIpAtomsK|pKS
62 51 61 eqtr4d KHLiISBIMGy|iIy=S=iIMS