| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmapglb2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
pmapglb2.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 3 |
|
pmapglb2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
pmapglb2.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
| 5 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 6 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
| 7 |
2 6
|
glb0N |
⊢ ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = ( 1. ‘ 𝐾 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) ) |
| 9 |
6 3 4
|
pmap1N |
⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) = 𝐴 ) |
| 10 |
8 9
|
eqtrd |
⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) |
| 11 |
5 10
|
syl |
⊢ ( 𝐾 ∈ HL → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) |
| 12 |
|
2fveq3 |
⊢ ( 𝑆 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) ) |
| 13 |
|
riin0 |
⊢ ( 𝑆 = ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) = 𝐴 ) |
| 14 |
12 13
|
eqeq12d |
⊢ ( 𝑆 = ∅ → ( ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) ) |
| 15 |
11 14
|
syl5ibrcom |
⊢ ( 𝐾 ∈ HL → ( 𝑆 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 17 |
1 2 4
|
pmapglb |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐾 ∈ HL ) |
| 20 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 21 |
20
|
adantll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 22 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑥 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 23 |
19 21 22
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 24 |
18 23
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ∧ ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) |
| 25 |
24
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ 𝑆 ∧ ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 26 |
25
|
eximdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( ∃ 𝑥 𝑥 ∈ 𝑆 → ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 27 |
|
n0 |
⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑆 ) |
| 28 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) |
| 29 |
26 27 28
|
3imtr4g |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 ≠ ∅ → ∃ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) |
| 30 |
29
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 31 |
|
iinss |
⊢ ( ∃ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 → ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 33 |
|
sseqin2 |
⊢ ( ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
| 34 |
32 33
|
sylib |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
| 35 |
17 34
|
eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) |
| 36 |
35
|
3expia |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 ≠ ∅ → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 37 |
16 36
|
pm2.61dne |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) |