Metamath Proof Explorer


Theorem pmapglb2xN

Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N , where we read S as S ( i ) . Extension of Theorem 15.5.2 of MaedaMaeda p. 62 that allows I = (/) . (Contributed by NM, 21-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapglb2.b 𝐵 = ( Base ‘ 𝐾 )
pmapglb2.g 𝐺 = ( glb ‘ 𝐾 )
pmapglb2.a 𝐴 = ( Atoms ‘ 𝐾 )
pmapglb2.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion pmapglb2xN ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 pmapglb2.b 𝐵 = ( Base ‘ 𝐾 )
2 pmapglb2.g 𝐺 = ( glb ‘ 𝐾 )
3 pmapglb2.a 𝐴 = ( Atoms ‘ 𝐾 )
4 pmapglb2.m 𝑀 = ( pmap ‘ 𝐾 )
5 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
6 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
7 2 6 glb0N ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = ( 1. ‘ 𝐾 ) )
8 7 fveq2d ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) )
9 6 3 4 pmap1N ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) = 𝐴 )
10 8 9 eqtrd ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 )
11 5 10 syl ( 𝐾 ∈ HL → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 )
12 rexeq ( 𝐼 = ∅ → ( ∃ 𝑖𝐼 𝑦 = 𝑆 ↔ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 ) )
13 12 abbidv ( 𝐼 = ∅ → { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } = { 𝑦 ∣ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 } )
14 rex0 ¬ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆
15 14 abf { 𝑦 ∣ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 } = ∅
16 13 15 eqtrdi ( 𝐼 = ∅ → { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } = ∅ )
17 16 fveq2d ( 𝐼 = ∅ → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) = ( 𝐺 ‘ ∅ ) )
18 17 fveq2d ( 𝐼 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) )
19 riin0 ( 𝐼 = ∅ → ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) = 𝐴 )
20 18 19 eqeq12d ( 𝐼 = ∅ → ( ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) ↔ ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) )
21 11 20 syl5ibrcom ( 𝐾 ∈ HL → ( 𝐼 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) ) )
22 21 adantr ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝐼 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) ) )
23 1 2 4 pmapglbx ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = 𝑖𝐼 ( 𝑀𝑆 ) )
24 nfv 𝑖 𝐾 ∈ HL
25 nfra1 𝑖𝑖𝐼 𝑆𝐵
26 24 25 nfan 𝑖 ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 )
27 simpr ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑖𝐼 ) → 𝑖𝐼 )
28 simpll ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑖𝐼 ) → 𝐾 ∈ HL )
29 rspa ( ( ∀ 𝑖𝐼 𝑆𝐵𝑖𝐼 ) → 𝑆𝐵 )
30 29 adantll ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑖𝐼 ) → 𝑆𝐵 )
31 1 3 4 pmapssat ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑀𝑆 ) ⊆ 𝐴 )
32 28 30 31 syl2anc ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑖𝐼 ) → ( 𝑀𝑆 ) ⊆ 𝐴 )
33 27 32 jca ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑖𝐼 ) → ( 𝑖𝐼 ∧ ( 𝑀𝑆 ) ⊆ 𝐴 ) )
34 33 ex ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝑖𝐼 → ( 𝑖𝐼 ∧ ( 𝑀𝑆 ) ⊆ 𝐴 ) ) )
35 26 34 eximd ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( ∃ 𝑖 𝑖𝐼 → ∃ 𝑖 ( 𝑖𝐼 ∧ ( 𝑀𝑆 ) ⊆ 𝐴 ) ) )
36 n0 ( 𝐼 ≠ ∅ ↔ ∃ 𝑖 𝑖𝐼 )
37 df-rex ( ∃ 𝑖𝐼 ( 𝑀𝑆 ) ⊆ 𝐴 ↔ ∃ 𝑖 ( 𝑖𝐼 ∧ ( 𝑀𝑆 ) ⊆ 𝐴 ) )
38 35 36 37 3imtr4g ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝐼 ≠ ∅ → ∃ 𝑖𝐼 ( 𝑀𝑆 ) ⊆ 𝐴 ) )
39 38 3impia ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → ∃ 𝑖𝐼 ( 𝑀𝑆 ) ⊆ 𝐴 )
40 iinss ( ∃ 𝑖𝐼 ( 𝑀𝑆 ) ⊆ 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ⊆ 𝐴 )
41 39 40 syl ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → 𝑖𝐼 ( 𝑀𝑆 ) ⊆ 𝐴 )
42 sseqin2 ( 𝑖𝐼 ( 𝑀𝑆 ) ⊆ 𝐴 ↔ ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) = 𝑖𝐼 ( 𝑀𝑆 ) )
43 41 42 sylib ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) = 𝑖𝐼 ( 𝑀𝑆 ) )
44 23 43 eqtr4d ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) )
45 44 3expia ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝐼 ≠ ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) ) )
46 22 45 pm2.61dne ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 𝑖𝐼 ( 𝑀𝑆 ) ) )