| Step |
Hyp |
Ref |
Expression |
| 1 |
|
glb0.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 2 |
|
glb0.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 5 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 6 |
|
id |
⊢ ( 𝐾 ∈ OP → 𝐾 ∈ OP ) |
| 7 |
|
0ss |
⊢ ∅ ⊆ ( Base ‘ 𝐾 ) |
| 8 |
7
|
a1i |
⊢ ( 𝐾 ∈ OP → ∅ ⊆ ( Base ‘ 𝐾 ) ) |
| 9 |
3 4 1 5 6 8
|
glbval |
⊢ ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) |
| 10 |
3 2
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 |
| 12 |
11
|
a1bi |
⊢ ( 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 13 |
12
|
ralbii |
⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 14 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 |
| 15 |
14
|
biantrur |
⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ↔ ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 16 |
13 15
|
bitri |
⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 17 |
10
|
adantr |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → 1 ∈ ( Base ‘ 𝐾 ) ) |
| 18 |
|
breq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ 1 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 19 |
18
|
rspcv |
⊢ ( 1 ∈ ( Base ‘ 𝐾 ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 → 1 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 20 |
17 19
|
syl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 → 1 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 21 |
3 4 2
|
op1le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 1 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑥 = 1 ) ) |
| 22 |
20 21
|
sylibd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 → 𝑥 = 1 ) ) |
| 23 |
3 4 2
|
ople1 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → 𝑧 ( le ‘ 𝐾 ) 1 ) |
| 24 |
23
|
adantlr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → 𝑧 ( le ‘ 𝐾 ) 1 ) |
| 25 |
24
|
ex |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐾 ) → 𝑧 ( le ‘ 𝐾 ) 1 ) ) |
| 26 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑧 ( le ‘ 𝐾 ) 1 ) ) |
| 27 |
26
|
biimprcd |
⊢ ( 𝑧 ( le ‘ 𝐾 ) 1 → ( 𝑥 = 1 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 28 |
25 27
|
syl6 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐾 ) → ( 𝑥 = 1 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 29 |
28
|
com23 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 = 1 → ( 𝑧 ∈ ( Base ‘ 𝐾 ) → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 30 |
29
|
ralrimdv |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 = 1 → ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 31 |
22 30
|
impbid |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑥 = 1 ) ) |
| 32 |
16 31
|
bitr3id |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ 𝑥 = 1 ) ) |
| 33 |
10 32
|
riota5 |
⊢ ( 𝐾 ∈ OP → ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) = 1 ) |
| 34 |
9 33
|
eqtrd |
⊢ ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = 1 ) |