Description: The greatest lower bound of the empty set is the unity element. (Contributed by NM, 5-Dec-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | glb0.g | |
|
glb0.u | |
||
Assertion | glb0N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glb0.g | |
|
2 | glb0.u | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | biid | |
|
6 | id | |
|
7 | 0ss | |
|
8 | 7 | a1i | |
9 | 3 4 1 5 6 8 | glbval | |
10 | 3 2 | op1cl | |
11 | ral0 | |
|
12 | 11 | a1bi | |
13 | 12 | ralbii | |
14 | ral0 | |
|
15 | 14 | biantrur | |
16 | 13 15 | bitri | |
17 | 10 | adantr | |
18 | breq1 | |
|
19 | 18 | rspcv | |
20 | 17 19 | syl | |
21 | 3 4 2 | op1le | |
22 | 20 21 | sylibd | |
23 | 3 4 2 | ople1 | |
24 | 23 | adantlr | |
25 | 24 | ex | |
26 | breq2 | |
|
27 | 26 | biimprcd | |
28 | 25 27 | syl6 | |
29 | 28 | com23 | |
30 | 29 | ralrimdv | |
31 | 22 30 | impbid | |
32 | 16 31 | bitr3id | |
33 | 10 32 | riota5 | |
34 | 9 33 | eqtrd | |