Metamath Proof Explorer


Theorem glb0N

Description: The greatest lower bound of the empty set is the unity element. (Contributed by NM, 5-Dec-2011) (New usage is discouraged.)

Ref Expression
Hypotheses glb0.g G=glbK
glb0.u 1˙=1.K
Assertion glb0N KOPG=1˙

Proof

Step Hyp Ref Expression
1 glb0.g G=glbK
2 glb0.u 1˙=1.K
3 eqid BaseK=BaseK
4 eqid K=K
5 biid yxKyzBaseKyzKyzKxyxKyzBaseKyzKyzKx
6 id KOPKOP
7 0ss BaseK
8 7 a1i KOPBaseK
9 3 4 1 5 6 8 glbval KOPG=ιxBaseK|yxKyzBaseKyzKyzKx
10 3 2 op1cl KOP1˙BaseK
11 ral0 yzKy
12 11 a1bi zKxyzKyzKx
13 12 ralbii zBaseKzKxzBaseKyzKyzKx
14 ral0 yxKy
15 14 biantrur zBaseKyzKyzKxyxKyzBaseKyzKyzKx
16 13 15 bitri zBaseKzKxyxKyzBaseKyzKyzKx
17 10 adantr KOPxBaseK1˙BaseK
18 breq1 z=1˙zKx1˙Kx
19 18 rspcv 1˙BaseKzBaseKzKx1˙Kx
20 17 19 syl KOPxBaseKzBaseKzKx1˙Kx
21 3 4 2 op1le KOPxBaseK1˙Kxx=1˙
22 20 21 sylibd KOPxBaseKzBaseKzKxx=1˙
23 3 4 2 ople1 KOPzBaseKzK1˙
24 23 adantlr KOPxBaseKzBaseKzK1˙
25 24 ex KOPxBaseKzBaseKzK1˙
26 breq2 x=1˙zKxzK1˙
27 26 biimprcd zK1˙x=1˙zKx
28 25 27 syl6 KOPxBaseKzBaseKx=1˙zKx
29 28 com23 KOPxBaseKx=1˙zBaseKzKx
30 29 ralrimdv KOPxBaseKx=1˙zBaseKzKx
31 22 30 impbid KOPxBaseKzBaseKzKxx=1˙
32 16 31 bitr3id KOPxBaseKyxKyzBaseKyzKyzKxx=1˙
33 10 32 riota5 KOPιxBaseK|yxKyzBaseKyzKyzKx=1˙
34 9 33 eqtrd KOPG=1˙