| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0i |
|- ( F e. ( A ^pm C ) -> -. ( A ^pm C ) = (/) ) |
| 2 |
|
fnpm |
|- ^pm Fn ( _V X. _V ) |
| 3 |
2
|
fndmi |
|- dom ^pm = ( _V X. _V ) |
| 4 |
3
|
ndmov |
|- ( -. ( A e. _V /\ C e. _V ) -> ( A ^pm C ) = (/) ) |
| 5 |
1 4
|
nsyl2 |
|- ( F e. ( A ^pm C ) -> ( A e. _V /\ C e. _V ) ) |
| 6 |
5
|
simpld |
|- ( F e. ( A ^pm C ) -> A e. _V ) |
| 7 |
6
|
adantl |
|- ( ( B e. V /\ F e. ( A ^pm C ) ) -> A e. _V ) |
| 8 |
|
simpl |
|- ( ( B e. V /\ F e. ( A ^pm C ) ) -> B e. V ) |
| 9 |
|
elpmi |
|- ( F e. ( A ^pm C ) -> ( F : dom F --> A /\ dom F C_ C ) ) |
| 10 |
9
|
simpld |
|- ( F e. ( A ^pm C ) -> F : dom F --> A ) |
| 11 |
10
|
adantl |
|- ( ( B e. V /\ F e. ( A ^pm C ) ) -> F : dom F --> A ) |
| 12 |
|
inss1 |
|- ( dom F i^i B ) C_ dom F |
| 13 |
|
fssres |
|- ( ( F : dom F --> A /\ ( dom F i^i B ) C_ dom F ) -> ( F |` ( dom F i^i B ) ) : ( dom F i^i B ) --> A ) |
| 14 |
11 12 13
|
sylancl |
|- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( F |` ( dom F i^i B ) ) : ( dom F i^i B ) --> A ) |
| 15 |
|
ffun |
|- ( F : dom F --> A -> Fun F ) |
| 16 |
|
resres |
|- ( ( F |` dom F ) |` B ) = ( F |` ( dom F i^i B ) ) |
| 17 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 18 |
|
resdm |
|- ( Rel F -> ( F |` dom F ) = F ) |
| 19 |
|
reseq1 |
|- ( ( F |` dom F ) = F -> ( ( F |` dom F ) |` B ) = ( F |` B ) ) |
| 20 |
17 18 19
|
3syl |
|- ( Fun F -> ( ( F |` dom F ) |` B ) = ( F |` B ) ) |
| 21 |
16 20
|
eqtr3id |
|- ( Fun F -> ( F |` ( dom F i^i B ) ) = ( F |` B ) ) |
| 22 |
11 15 21
|
3syl |
|- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( F |` ( dom F i^i B ) ) = ( F |` B ) ) |
| 23 |
22
|
feq1d |
|- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( ( F |` ( dom F i^i B ) ) : ( dom F i^i B ) --> A <-> ( F |` B ) : ( dom F i^i B ) --> A ) ) |
| 24 |
14 23
|
mpbid |
|- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( F |` B ) : ( dom F i^i B ) --> A ) |
| 25 |
|
inss2 |
|- ( dom F i^i B ) C_ B |
| 26 |
|
elpm2r |
|- ( ( ( A e. _V /\ B e. V ) /\ ( ( F |` B ) : ( dom F i^i B ) --> A /\ ( dom F i^i B ) C_ B ) ) -> ( F |` B ) e. ( A ^pm B ) ) |
| 27 |
25 26
|
mpanr2 |
|- ( ( ( A e. _V /\ B e. V ) /\ ( F |` B ) : ( dom F i^i B ) --> A ) -> ( F |` B ) e. ( A ^pm B ) ) |
| 28 |
7 8 24 27
|
syl21anc |
|- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( F |` B ) e. ( A ^pm B ) ) |