| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flcl |
|- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
| 2 |
|
zre |
|- ( ( |_ ` A ) e. ZZ -> ( |_ ` A ) e. RR ) |
| 3 |
|
peano2re |
|- ( ( |_ ` A ) e. RR -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 4 |
2 3
|
syl |
|- ( ( |_ ` A ) e. ZZ -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 5 |
4
|
adantr |
|- ( ( ( |_ ` A ) e. ZZ /\ ( ( |_ ` A ) + 1 ) e. Prime ) -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 6 |
|
ppicl |
|- ( ( ( |_ ` A ) + 1 ) e. RR -> ( ppi ` ( ( |_ ` A ) + 1 ) ) e. NN0 ) |
| 7 |
5 6
|
syl |
|- ( ( ( |_ ` A ) e. ZZ /\ ( ( |_ ` A ) + 1 ) e. Prime ) -> ( ppi ` ( ( |_ ` A ) + 1 ) ) e. NN0 ) |
| 8 |
7
|
nn0red |
|- ( ( ( |_ ` A ) e. ZZ /\ ( ( |_ ` A ) + 1 ) e. Prime ) -> ( ppi ` ( ( |_ ` A ) + 1 ) ) e. RR ) |
| 9 |
|
ppiprm |
|- ( ( ( |_ ` A ) e. ZZ /\ ( ( |_ ` A ) + 1 ) e. Prime ) -> ( ppi ` ( ( |_ ` A ) + 1 ) ) = ( ( ppi ` ( |_ ` A ) ) + 1 ) ) |
| 10 |
8 9
|
eqled |
|- ( ( ( |_ ` A ) e. ZZ /\ ( ( |_ ` A ) + 1 ) e. Prime ) -> ( ppi ` ( ( |_ ` A ) + 1 ) ) <_ ( ( ppi ` ( |_ ` A ) ) + 1 ) ) |
| 11 |
|
ppinprm |
|- ( ( ( |_ ` A ) e. ZZ /\ -. ( ( |_ ` A ) + 1 ) e. Prime ) -> ( ppi ` ( ( |_ ` A ) + 1 ) ) = ( ppi ` ( |_ ` A ) ) ) |
| 12 |
|
ppicl |
|- ( ( |_ ` A ) e. RR -> ( ppi ` ( |_ ` A ) ) e. NN0 ) |
| 13 |
2 12
|
syl |
|- ( ( |_ ` A ) e. ZZ -> ( ppi ` ( |_ ` A ) ) e. NN0 ) |
| 14 |
13
|
nn0red |
|- ( ( |_ ` A ) e. ZZ -> ( ppi ` ( |_ ` A ) ) e. RR ) |
| 15 |
14
|
adantr |
|- ( ( ( |_ ` A ) e. ZZ /\ -. ( ( |_ ` A ) + 1 ) e. Prime ) -> ( ppi ` ( |_ ` A ) ) e. RR ) |
| 16 |
15
|
lep1d |
|- ( ( ( |_ ` A ) e. ZZ /\ -. ( ( |_ ` A ) + 1 ) e. Prime ) -> ( ppi ` ( |_ ` A ) ) <_ ( ( ppi ` ( |_ ` A ) ) + 1 ) ) |
| 17 |
11 16
|
eqbrtrd |
|- ( ( ( |_ ` A ) e. ZZ /\ -. ( ( |_ ` A ) + 1 ) e. Prime ) -> ( ppi ` ( ( |_ ` A ) + 1 ) ) <_ ( ( ppi ` ( |_ ` A ) ) + 1 ) ) |
| 18 |
10 17
|
pm2.61dan |
|- ( ( |_ ` A ) e. ZZ -> ( ppi ` ( ( |_ ` A ) + 1 ) ) <_ ( ( ppi ` ( |_ ` A ) ) + 1 ) ) |
| 19 |
1 18
|
syl |
|- ( A e. RR -> ( ppi ` ( ( |_ ` A ) + 1 ) ) <_ ( ( ppi ` ( |_ ` A ) ) + 1 ) ) |
| 20 |
|
1z |
|- 1 e. ZZ |
| 21 |
|
fladdz |
|- ( ( A e. RR /\ 1 e. ZZ ) -> ( |_ ` ( A + 1 ) ) = ( ( |_ ` A ) + 1 ) ) |
| 22 |
20 21
|
mpan2 |
|- ( A e. RR -> ( |_ ` ( A + 1 ) ) = ( ( |_ ` A ) + 1 ) ) |
| 23 |
22
|
fveq2d |
|- ( A e. RR -> ( ppi ` ( |_ ` ( A + 1 ) ) ) = ( ppi ` ( ( |_ ` A ) + 1 ) ) ) |
| 24 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
| 25 |
|
ppifl |
|- ( ( A + 1 ) e. RR -> ( ppi ` ( |_ ` ( A + 1 ) ) ) = ( ppi ` ( A + 1 ) ) ) |
| 26 |
24 25
|
syl |
|- ( A e. RR -> ( ppi ` ( |_ ` ( A + 1 ) ) ) = ( ppi ` ( A + 1 ) ) ) |
| 27 |
23 26
|
eqtr3d |
|- ( A e. RR -> ( ppi ` ( ( |_ ` A ) + 1 ) ) = ( ppi ` ( A + 1 ) ) ) |
| 28 |
|
ppifl |
|- ( A e. RR -> ( ppi ` ( |_ ` A ) ) = ( ppi ` A ) ) |
| 29 |
28
|
oveq1d |
|- ( A e. RR -> ( ( ppi ` ( |_ ` A ) ) + 1 ) = ( ( ppi ` A ) + 1 ) ) |
| 30 |
19 27 29
|
3brtr3d |
|- ( A e. RR -> ( ppi ` ( A + 1 ) ) <_ ( ( ppi ` A ) + 1 ) ) |