| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 2 |
|
zre |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 3 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 4 |
2 3
|
syl |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 5 |
4
|
adantr |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 6 |
|
ppicl |
⊢ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℕ0 ) |
| 7 |
5 6
|
syl |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℕ0 ) |
| 8 |
7
|
nn0red |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) |
| 9 |
|
ppiprm |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) = ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ) |
| 10 |
8 9
|
eqled |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ) |
| 11 |
|
ppinprm |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ¬ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) = ( π ‘ ( ⌊ ‘ 𝐴 ) ) ) |
| 12 |
|
ppicl |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 13 |
2 12
|
syl |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 14 |
13
|
nn0red |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ ) |
| 15 |
14
|
adantr |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ¬ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ ) |
| 16 |
15
|
lep1d |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ¬ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ) |
| 17 |
11 16
|
eqbrtrd |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ¬ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ) |
| 18 |
10 17
|
pm2.61dan |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ) |
| 19 |
1 18
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ) |
| 20 |
|
1z |
⊢ 1 ∈ ℤ |
| 21 |
|
fladdz |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℤ ) → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 22 |
20 21
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 24 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 25 |
|
ppifl |
⊢ ( ( 𝐴 + 1 ) ∈ ℝ → ( π ‘ ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( π ‘ ( 𝐴 + 1 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( π ‘ ( 𝐴 + 1 ) ) ) |
| 27 |
23 26
|
eqtr3d |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) = ( π ‘ ( 𝐴 + 1 ) ) ) |
| 28 |
|
ppifl |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) = ( π ‘ 𝐴 ) ) |
| 29 |
28
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) = ( ( π ‘ 𝐴 ) + 1 ) ) |
| 30 |
19 27 29
|
3brtr3d |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ ( 𝐴 + 1 ) ) ≤ ( ( π ‘ 𝐴 ) + 1 ) ) |