| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
| 2 |
|
precsexlem.2 |
|- L = ( 1st o. F ) |
| 3 |
|
precsexlem.3 |
|- R = ( 2nd o. F ) |
| 4 |
3
|
fveq1i |
|- ( R ` suc I ) = ( ( 2nd o. F ) ` suc I ) |
| 5 |
|
peano2 |
|- ( I e. _om -> suc I e. _om ) |
| 6 |
|
nnon |
|- ( suc I e. _om -> suc I e. On ) |
| 7 |
|
rdgfnon |
|- rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On |
| 8 |
1
|
fneq1i |
|- ( F Fn On <-> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On ) |
| 9 |
7 8
|
mpbir |
|- F Fn On |
| 10 |
|
fvco2 |
|- ( ( F Fn On /\ suc I e. On ) -> ( ( 2nd o. F ) ` suc I ) = ( 2nd ` ( F ` suc I ) ) ) |
| 11 |
9 10
|
mpan |
|- ( suc I e. On -> ( ( 2nd o. F ) ` suc I ) = ( 2nd ` ( F ` suc I ) ) ) |
| 12 |
5 6 11
|
3syl |
|- ( I e. _om -> ( ( 2nd o. F ) ` suc I ) = ( 2nd ` ( F ` suc I ) ) ) |
| 13 |
1 2 3
|
precsexlem3 |
|- ( I e. _om -> ( F ` suc I ) = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
| 14 |
13
|
fveq2d |
|- ( I e. _om -> ( 2nd ` ( F ` suc I ) ) = ( 2nd ` <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) ) |
| 15 |
|
fvex |
|- ( L ` I ) e. _V |
| 16 |
|
fvex |
|- ( _Right ` A ) e. _V |
| 17 |
16 15
|
ab2rexex |
|- { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } e. _V |
| 18 |
|
fvex |
|- ( _Left ` A ) e. _V |
| 19 |
18
|
rabex |
|- { x e. ( _Left ` A ) | 0s |
| 20 |
|
fvex |
|- ( R ` I ) e. _V |
| 21 |
19 20
|
ab2rexex |
|- { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 22 |
17 21
|
unex |
|- ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 23 |
15 22
|
unex |
|- ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 24 |
19 15
|
ab2rexex |
|- { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 25 |
16 20
|
ab2rexex |
|- { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } e. _V |
| 26 |
24 25
|
unex |
|- ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 27 |
20 26
|
unex |
|- ( ( R ` I ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 28 |
23 27
|
op2nd |
|- ( 2nd ` <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) = ( ( R ` I ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 29 |
14 28
|
eqtrdi |
|- ( I e. _om -> ( 2nd ` ( F ` suc I ) ) = ( ( R ` I ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 30 |
12 29
|
eqtrd |
|- ( I e. _om -> ( ( 2nd o. F ) ` suc I ) = ( ( R ` I ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 31 |
4 30
|
eqtrid |
|- ( I e. _om -> ( R ` suc I ) = ( ( R ` I ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |