| Step | Hyp | Ref | Expression | 
						
							| 1 |  | precsexlem.1 |  |-  F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) | 
						
							| 2 |  | precsexlem.2 |  |-  L = ( 1st o. F ) | 
						
							| 3 |  | precsexlem.3 |  |-  R = ( 2nd o. F ) | 
						
							| 4 |  | nnon |  |-  ( I e. _om -> I e. On ) | 
						
							| 5 |  | opex |  |-  <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . e. _V | 
						
							| 6 | 5 | csbex |  |-  [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . e. _V | 
						
							| 7 | 6 | csbex |  |-  [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . e. _V | 
						
							| 8 |  | fveq2 |  |-  ( p = ( F ` I ) -> ( 1st ` p ) = ( 1st ` ( F ` I ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( p = ( F ` I ) -> ( 2nd ` p ) = ( 2nd ` ( F ` I ) ) ) | 
						
							| 10 | 9 | csbeq1d |  |-  ( p = ( F ` I ) -> [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) | 
						
							| 11 | 8 10 | csbeq12dv |  |-  ( p = ( F ` I ) -> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) | 
						
							| 12 | 1 11 | rdgsucmpt |  |-  ( ( I e. On /\ [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . e. _V ) -> ( F ` suc I ) = [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) | 
						
							| 13 | 4 7 12 | sylancl |  |-  ( I e. _om -> ( F ` suc I ) = [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) | 
						
							| 14 | 2 | fveq1i |  |-  ( L ` I ) = ( ( 1st o. F ) ` I ) | 
						
							| 15 |  | rdgfnon |  |-  rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On | 
						
							| 16 | 1 | fneq1i |  |-  ( F Fn On <-> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On ) | 
						
							| 17 | 15 16 | mpbir |  |-  F Fn On | 
						
							| 18 |  | fvco2 |  |-  ( ( F Fn On /\ I e. On ) -> ( ( 1st o. F ) ` I ) = ( 1st ` ( F ` I ) ) ) | 
						
							| 19 | 17 4 18 | sylancr |  |-  ( I e. _om -> ( ( 1st o. F ) ` I ) = ( 1st ` ( F ` I ) ) ) | 
						
							| 20 | 14 19 | eqtrid |  |-  ( I e. _om -> ( L ` I ) = ( 1st ` ( F ` I ) ) ) | 
						
							| 21 | 3 | fveq1i |  |-  ( R ` I ) = ( ( 2nd o. F ) ` I ) | 
						
							| 22 |  | fvco2 |  |-  ( ( F Fn On /\ I e. On ) -> ( ( 2nd o. F ) ` I ) = ( 2nd ` ( F ` I ) ) ) | 
						
							| 23 | 17 4 22 | sylancr |  |-  ( I e. _om -> ( ( 2nd o. F ) ` I ) = ( 2nd ` ( F ` I ) ) ) | 
						
							| 24 | 21 23 | eqtrid |  |-  ( I e. _om -> ( R ` I ) = ( 2nd ` ( F ` I ) ) ) | 
						
							| 25 | 24 | csbeq1d |  |-  ( I e. _om -> [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) | 
						
							| 26 | 20 25 | csbeq12dv |  |-  ( I e. _om -> [_ ( L ` I ) / l ]_ [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) | 
						
							| 27 |  | fvex |  |-  ( R ` I ) e. _V | 
						
							| 28 |  | rexeq |  |-  ( r = ( R ` I ) -> ( E. yR e. r a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) | 
						
							| 29 | 28 | rexbidv |  |-  ( r = ( R ` I ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 30 | 29 | abbidv |  |-  ( r = ( R ` I ) -> { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 31 | 30 | uneq2d |  |-  ( r = ( R ` I ) -> ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 32 | 31 | uneq2d |  |-  ( r = ( R ` I ) -> ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 33 |  | id |  |-  ( r = ( R ` I ) -> r = ( R ` I ) ) | 
						
							| 34 |  | rexeq |  |-  ( r = ( R ` I ) -> ( E. yR e. r a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) | 
						
							| 35 | 34 | rexbidv |  |-  ( r = ( R ` I ) -> ( E. xR e. ( _Right ` A ) E. yR e. r a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) | 
						
							| 36 | 35 | abbidv |  |-  ( r = ( R ` I ) -> { a | E. xR e. ( _Right ` A ) E. yR e. r a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } = { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } ) | 
						
							| 37 | 36 | uneq2d |  |-  ( r = ( R ` I ) -> ( { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 38 | 33 37 | uneq12d |  |-  ( r = ( R ` I ) -> ( r u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 39 | 32 38 | opeq12d |  |-  ( r = ( R ` I ) -> <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) | 
						
							| 40 | 27 39 | csbie |  |-  [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . | 
						
							| 41 | 40 | csbeq2i |  |-  [_ ( L ` I ) / l ]_ [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( L ` I ) / l ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . | 
						
							| 42 |  | fvex |  |-  ( L ` I ) e. _V | 
						
							| 43 |  | id |  |-  ( l = ( L ` I ) -> l = ( L ` I ) ) | 
						
							| 44 |  | rexeq |  |-  ( l = ( L ` I ) -> ( E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) | 
						
							| 45 | 44 | rexbidv |  |-  ( l = ( L ` I ) -> ( E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) | 
						
							| 46 | 45 | abbidv |  |-  ( l = ( L ` I ) -> { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } = { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } ) | 
						
							| 47 | 46 | uneq1d |  |-  ( l = ( L ` I ) -> ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 48 | 43 47 | uneq12d |  |-  ( l = ( L ` I ) -> ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 49 |  | rexeq |  |-  ( l = ( L ` I ) -> ( E. yL e. l a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) | 
						
							| 50 | 49 | rexbidv |  |-  ( l = ( L ` I ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 51 | 50 | abbidv |  |-  ( l = ( L ` I ) -> { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 52 | 51 | uneq1d |  |-  ( l = ( L ` I ) -> ( { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 53 | 52 | uneq2d |  |-  ( l = ( L ` I ) -> ( ( R ` I ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 54 | 48 53 | opeq12d |  |-  ( l = ( L ` I ) -> <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) | 
						
							| 55 | 42 54 | csbie |  |-  [_ ( L ` I ) / l ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . | 
						
							| 56 | 41 55 | eqtri |  |-  [_ ( L ` I ) / l ]_ [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . | 
						
							| 57 | 26 56 | eqtr3di |  |-  ( I e. _om -> [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) | 
						
							| 58 | 13 57 | eqtrd |  |-  ( I e. _om -> ( F ` suc I ) = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |