| Step | Hyp | Ref | Expression | 
						
							| 1 |  | precsexlem.1 | ⊢ 𝐹  =  rec ( ( 𝑝  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 ) | 
						
							| 2 |  | precsexlem.2 | ⊢ 𝐿  =  ( 1st   ∘  𝐹 ) | 
						
							| 3 |  | precsexlem.3 | ⊢ 𝑅  =  ( 2nd   ∘  𝐹 ) | 
						
							| 4 |  | nnon | ⊢ ( 𝐼  ∈  ω  →  𝐼  ∈  On ) | 
						
							| 5 |  | opex | ⊢ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  ∈  V | 
						
							| 6 | 5 | csbex | ⊢ ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  ∈  V | 
						
							| 7 | 6 | csbex | ⊢ ⦋ ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  ∈  V | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑝  =  ( 𝐹 ‘ 𝐼 )  →  ( 1st  ‘ 𝑝 )  =  ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑝  =  ( 𝐹 ‘ 𝐼 )  →  ( 2nd  ‘ 𝑝 )  =  ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 10 | 9 | csbeq1d | ⊢ ( 𝑝  =  ( 𝐹 ‘ 𝐼 )  →  ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 11 | 8 10 | csbeq12dv | ⊢ ( 𝑝  =  ( 𝐹 ‘ 𝐼 )  →  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 12 | 1 11 | rdgsucmpt | ⊢ ( ( 𝐼  ∈  On  ∧  ⦋ ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  ∈  V )  →  ( 𝐹 ‘ suc  𝐼 )  =  ⦋ ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 13 | 4 7 12 | sylancl | ⊢ ( 𝐼  ∈  ω  →  ( 𝐹 ‘ suc  𝐼 )  =  ⦋ ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 14 | 2 | fveq1i | ⊢ ( 𝐿 ‘ 𝐼 )  =  ( ( 1st   ∘  𝐹 ) ‘ 𝐼 ) | 
						
							| 15 |  | rdgfnon | ⊢ rec ( ( 𝑝  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 )  Fn  On | 
						
							| 16 | 1 | fneq1i | ⊢ ( 𝐹  Fn  On  ↔  rec ( ( 𝑝  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 )  Fn  On ) | 
						
							| 17 | 15 16 | mpbir | ⊢ 𝐹  Fn  On | 
						
							| 18 |  | fvco2 | ⊢ ( ( 𝐹  Fn  On  ∧  𝐼  ∈  On )  →  ( ( 1st   ∘  𝐹 ) ‘ 𝐼 )  =  ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 19 | 17 4 18 | sylancr | ⊢ ( 𝐼  ∈  ω  →  ( ( 1st   ∘  𝐹 ) ‘ 𝐼 )  =  ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 20 | 14 19 | eqtrid | ⊢ ( 𝐼  ∈  ω  →  ( 𝐿 ‘ 𝐼 )  =  ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 21 | 3 | fveq1i | ⊢ ( 𝑅 ‘ 𝐼 )  =  ( ( 2nd   ∘  𝐹 ) ‘ 𝐼 ) | 
						
							| 22 |  | fvco2 | ⊢ ( ( 𝐹  Fn  On  ∧  𝐼  ∈  On )  →  ( ( 2nd   ∘  𝐹 ) ‘ 𝐼 )  =  ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 23 | 17 4 22 | sylancr | ⊢ ( 𝐼  ∈  ω  →  ( ( 2nd   ∘  𝐹 ) ‘ 𝐼 )  =  ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 24 | 21 23 | eqtrid | ⊢ ( 𝐼  ∈  ω  →  ( 𝑅 ‘ 𝐼 )  =  ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 25 | 24 | csbeq1d | ⊢ ( 𝐼  ∈  ω  →  ⦋ ( 𝑅 ‘ 𝐼 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 26 | 20 25 | csbeq12dv | ⊢ ( 𝐼  ∈  ω  →  ⦋ ( 𝐿 ‘ 𝐼 )  /  𝑙 ⦌ ⦋ ( 𝑅 ‘ 𝐼 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 27 |  | fvex | ⊢ ( 𝑅 ‘ 𝐼 )  ∈  V | 
						
							| 28 |  | rexeq | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  ( ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 29 | 28 | rexbidv | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 30 | 29 | abbidv | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) }  =  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) | 
						
							| 31 | 30 | uneq2d | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) | 
						
							| 32 | 31 | uneq2d | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) )  =  ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ) | 
						
							| 33 |  | id | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  𝑟  =  ( 𝑅 ‘ 𝐼 ) ) | 
						
							| 34 |  | rexeq | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  ( ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 35 | 34 | rexbidv | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 36 | 35 | abbidv | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) }  =  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) | 
						
							| 37 | 36 | uneq2d | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) | 
						
							| 38 | 33 37 | uneq12d | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) )  =  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) ) | 
						
							| 39 | 32 38 | opeq12d | ⊢ ( 𝑟  =  ( 𝑅 ‘ 𝐼 )  →  〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 40 | 27 39 | csbie | ⊢ ⦋ ( 𝑅 ‘ 𝐼 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 | 
						
							| 41 | 40 | csbeq2i | ⊢ ⦋ ( 𝐿 ‘ 𝐼 )  /  𝑙 ⦌ ⦋ ( 𝑅 ‘ 𝐼 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 𝐿 ‘ 𝐼 )  /  𝑙 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 | 
						
							| 42 |  | fvex | ⊢ ( 𝐿 ‘ 𝐼 )  ∈  V | 
						
							| 43 |  | id | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  𝑙  =  ( 𝐿 ‘ 𝐼 ) ) | 
						
							| 44 |  | rexeq | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  ( ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 45 | 44 | rexbidv | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 46 | 45 | abbidv | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  =  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) } ) | 
						
							| 47 | 46 | uneq1d | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) | 
						
							| 48 | 43 47 | uneq12d | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) )  =  ( ( 𝐿 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ) | 
						
							| 49 |  | rexeq | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  ( ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 50 | 49 | rexbidv | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 51 | 50 | abbidv | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  =  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) } ) | 
						
							| 52 | 51 | uneq1d | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) | 
						
							| 53 | 52 | uneq2d | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) )  =  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) ) | 
						
							| 54 | 48 53 | opeq12d | ⊢ ( 𝑙  =  ( 𝐿 ‘ 𝐼 )  →  〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  〈 ( ( 𝐿 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 55 | 42 54 | csbie | ⊢ ⦋ ( 𝐿 ‘ 𝐼 )  /  𝑙 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  〈 ( ( 𝐿 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 | 
						
							| 56 | 41 55 | eqtri | ⊢ ⦋ ( 𝐿 ‘ 𝐼 )  /  𝑙 ⦌ ⦋ ( 𝑅 ‘ 𝐼 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  〈 ( ( 𝐿 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 | 
						
							| 57 | 26 56 | eqtr3di | ⊢ ( 𝐼  ∈  ω  →  ⦋ ( 1st  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ ( 𝐹 ‘ 𝐼 ) )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  〈 ( ( 𝐿 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 58 | 13 57 | eqtrd | ⊢ ( 𝐼  ∈  ω  →  ( 𝐹 ‘ suc  𝐼 )  =  〈 ( ( 𝐿 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( ( 𝑅 ‘ 𝐼 )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ 𝐼 ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) |