| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psdffval.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psdffval.b |  |-  B = ( Base ` S ) | 
						
							| 3 |  | psdffval.d |  |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 4 |  | psdffval.i |  |-  ( ph -> I e. V ) | 
						
							| 5 |  | psdffval.r |  |-  ( ph -> R e. W ) | 
						
							| 6 |  | psdfval.x |  |-  ( ph -> X e. I ) | 
						
							| 7 | 1 2 3 4 5 | psdffval |  |-  ( ph -> ( I mPSDer R ) = ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) | 
						
							| 8 |  | fveq2 |  |-  ( x = X -> ( k ` x ) = ( k ` X ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( x = X -> ( ( k ` x ) + 1 ) = ( ( k ` X ) + 1 ) ) | 
						
							| 10 |  | eqeq2 |  |-  ( x = X -> ( y = x <-> y = X ) ) | 
						
							| 11 | 10 | ifbid |  |-  ( x = X -> if ( y = x , 1 , 0 ) = if ( y = X , 1 , 0 ) ) | 
						
							| 12 | 11 | mpteq2dv |  |-  ( x = X -> ( y e. I |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( x = X -> ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) = ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( x = X -> ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) = ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) | 
						
							| 15 | 9 14 | oveq12d |  |-  ( x = X -> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) = ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) | 
						
							| 16 | 15 | mpteq2dv |  |-  ( x = X -> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) = ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) | 
						
							| 17 | 16 | mpteq2dv |  |-  ( x = X -> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) = ( f e. B |-> ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ x = X ) -> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) = ( f e. B |-> ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) ) | 
						
							| 19 | 2 | fvexi |  |-  B e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ph -> B e. _V ) | 
						
							| 21 | 20 | mptexd |  |-  ( ph -> ( f e. B |-> ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) e. _V ) | 
						
							| 22 | 7 18 6 21 | fvmptd |  |-  ( ph -> ( ( I mPSDer R ) ` X ) = ( f e. B |-> ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) ) |