| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psdffval.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psdffval.b |  |-  B = ( Base ` S ) | 
						
							| 3 |  | psdffval.d |  |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 4 |  | psdffval.i |  |-  ( ph -> I e. V ) | 
						
							| 5 |  | psdffval.r |  |-  ( ph -> R e. W ) | 
						
							| 6 |  | df-psd |  |-  mPSDer = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> mPSDer = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) ) | 
						
							| 8 |  | simpl |  |-  ( ( i = I /\ r = R ) -> i = I ) | 
						
							| 9 |  | oveq12 |  |-  ( ( i = I /\ r = R ) -> ( i mPwSer r ) = ( I mPwSer R ) ) | 
						
							| 10 | 9 1 | eqtr4di |  |-  ( ( i = I /\ r = R ) -> ( i mPwSer r ) = S ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( i = I /\ r = R ) -> ( Base ` ( i mPwSer r ) ) = ( Base ` S ) ) | 
						
							| 12 | 11 2 | eqtr4di |  |-  ( ( i = I /\ r = R ) -> ( Base ` ( i mPwSer r ) ) = B ) | 
						
							| 13 | 8 | oveq2d |  |-  ( ( i = I /\ r = R ) -> ( NN0 ^m i ) = ( NN0 ^m I ) ) | 
						
							| 14 | 13 | rabeqdv |  |-  ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) | 
						
							| 15 | 14 3 | eqtr4di |  |-  ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = D ) | 
						
							| 16 |  | fveq2 |  |-  ( r = R -> ( .g ` r ) = ( .g ` R ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( i = I /\ r = R ) -> ( .g ` r ) = ( .g ` R ) ) | 
						
							| 18 |  | eqidd |  |-  ( ( i = I /\ r = R ) -> ( ( k ` x ) + 1 ) = ( ( k ` x ) + 1 ) ) | 
						
							| 19 | 8 | mpteq1d |  |-  ( ( i = I /\ r = R ) -> ( y e. i |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = x , 1 , 0 ) ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( i = I /\ r = R ) -> ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) = ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( i = I /\ r = R ) -> ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) = ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) | 
						
							| 22 | 17 18 21 | oveq123d |  |-  ( ( i = I /\ r = R ) -> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) = ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) | 
						
							| 23 | 15 22 | mpteq12dv |  |-  ( ( i = I /\ r = R ) -> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) = ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) | 
						
							| 24 | 12 23 | mpteq12dv |  |-  ( ( i = I /\ r = R ) -> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) = ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) | 
						
							| 25 | 8 24 | mpteq12dv |  |-  ( ( i = I /\ r = R ) -> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) = ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ ( i = I /\ r = R ) ) -> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) = ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) | 
						
							| 27 | 4 | elexd |  |-  ( ph -> I e. _V ) | 
						
							| 28 | 5 | elexd |  |-  ( ph -> R e. _V ) | 
						
							| 29 | 4 | mptexd |  |-  ( ph -> ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) e. _V ) | 
						
							| 30 | 7 26 27 28 29 | ovmpod |  |-  ( ph -> ( I mPSDer R ) = ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) |