| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psdffval.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psdffval.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | psdffval.d | ⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 4 |  | psdffval.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 5 |  | psdffval.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑊 ) | 
						
							| 6 |  | df-psd | ⊢  mPSDer   =  ( 𝑖  ∈  V ,  𝑟  ∈  V  ↦  ( 𝑥  ∈  𝑖  ↦  ( 𝑓  ∈  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  ↦  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →   mPSDer   =  ( 𝑖  ∈  V ,  𝑟  ∈  V  ↦  ( 𝑥  ∈  𝑖  ↦  ( 𝑓  ∈  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  ↦  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) ) ) ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  𝑖  =  𝐼 ) | 
						
							| 9 |  | oveq12 | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( 𝑖  mPwSer  𝑟 )  =  ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 10 | 9 1 | eqtr4di | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( 𝑖  mPwSer  𝑟 )  =  𝑆 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 11 2 | eqtr4di | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  =  𝐵 ) | 
						
							| 13 | 8 | oveq2d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( ℕ0  ↑m  𝑖 )  =  ( ℕ0  ↑m  𝐼 ) ) | 
						
							| 14 | 13 | rabeqdv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } ) | 
						
							| 15 | 14 3 | eqtr4di | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  =  𝐷 ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( .g ‘ 𝑟 )  =  ( .g ‘ 𝑅 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( .g ‘ 𝑟 )  =  ( .g ‘ 𝑅 ) ) | 
						
							| 18 |  | eqidd | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( ( 𝑘 ‘ 𝑥 )  +  1 )  =  ( ( 𝑘 ‘ 𝑥 )  +  1 ) ) | 
						
							| 19 | 8 | mpteq1d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) )  =  ( 𝑘  ∘f   +  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) )  =  ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) | 
						
							| 22 | 17 18 21 | oveq123d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) )  =  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) | 
						
							| 23 | 15 22 | mpteq12dv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) )  =  ( 𝑘  ∈  𝐷  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) | 
						
							| 24 | 12 23 | mpteq12dv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( 𝑓  ∈  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  ↦  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) )  =  ( 𝑓  ∈  𝐵  ↦  ( 𝑘  ∈  𝐷  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) ) | 
						
							| 25 | 8 24 | mpteq12dv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 )  →  ( 𝑥  ∈  𝑖  ↦  ( 𝑓  ∈  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  ↦  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑓  ∈  𝐵  ↦  ( 𝑘  ∈  𝐷  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  =  𝐼  ∧  𝑟  =  𝑅 ) )  →  ( 𝑥  ∈  𝑖  ↦  ( 𝑓  ∈  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  ↦  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑓  ∈  𝐵  ↦  ( 𝑘  ∈  𝐷  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) ) ) | 
						
							| 27 | 4 | elexd | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 28 | 5 | elexd | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 29 | 4 | mptexd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑓  ∈  𝐵  ↦  ( 𝑘  ∈  𝐷  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) )  ∈  V ) | 
						
							| 30 | 7 26 27 28 29 | ovmpod | ⊢ ( 𝜑  →  ( 𝐼  mPSDer  𝑅 )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑓  ∈  𝐵  ↦  ( 𝑘  ∈  𝐷  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) ) ) |